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Abstract 
Highly multimodal function optimization is similar to many other optimization problems requiring many 
iterations and large number of function evaluations. Glowworm Swarm Optimization (GSO) is one of the 
common swarm intelligence algorithms, where GSO has the ability to optimize multimodal functions 
efficiently. Locating the peaks of a high-dimensional multimodal function requires a large population, 
which is considered time consuming when sequential algorithms are used. Moreover, increasing the 
number of dimensions of a multimodal function usually increases the number of peaks exponentially. 
Therefore, a parallelization of the GSO algorithm is necessary to reduce the long execution time for 
capturing the peaks. In this paper, a parallel MapReduce-based GSO algorithm is proposed to speedup 
the GSO optimization process. We argue that GSO can be formulated based on the MapReduce parallel 
programming model quite naturally. In addition, we use higher dimensional multimodal benchmark 
functions for evaluating the proposed algorithm. The experimental results show that the proposed 
algorithm is appropriate for optimizing difficult multimodal functions with higher dimensions and 
achieving high peak capture rates. Furthermore, a scalability analysis shows that the proposed algorithm 
scales very well with increasing swarm sizes, and scales very close to the linear speedup while maintain 
high peak capture rates. In addition, an overhead of the Hadoop infrastructure is investigated to find if 
there is any relationship between the overhead, the swarm size, and number of nodes used.  
 

Introduction 
Optimization is the process of searching for the optimum solution from a set of candidate 

solutions based on specific performance criteria. There are many different optimization techniques that 
exist such as evolutionary computation and swarm intelligence.  

Swarm intelligence (Engelbrecht, 2007) is an optimization technique that is inspired by processes 
of natural swarms by simulating the behavior of natural swarms such as ant colonies, flocks of birds, 
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bacterial growth, and schools of fishes. The swarm behavior is based on the interactions between the 
swarm members by exchanging local information to reach the target, for example, locating the food 
source. However, instead of using the centralization concept in the swarm structure, all swarm members 
are equally engaged to achieve the main objective.  

There are many swarm intelligence methodologies such as Particle Swarm Optimization (PSO) 
(Kennedy and Eberhart, 1997) which is inspired by bird flocks searching for optimal food sources, where 
the direction in which a bird moves is influenced by its current movement, the best food source it ever 
experienced, and the best food source any bird in the flock ever experienced. Ant Colony Optimization 
(ACO) (Stuetzle, 2009) is based on the behavior of ants searching for the optimal shortest path between a 
food source and the colony using the pheromone they leave while traveling through the paths. Bee Colony 
Optimization (BCO) (Wong et al., 2008) mimics the food foraging behavior of honeybee colonies using a 
combination of local and global searches. 

Glowworm Swarm Optimization (GSO) (Krishnanand and Ghose, 2005) is inspired by the 
behavior of glowworms or lighting worms. These glowworms control the emission of their light and use it 
for different objectives such as attracting other worms during the breeding season. GSO's implementation 
simplicity and the small number of required parameters to be tuned (Krishnanand and Ghose, 2005; 
Krishnanand and Ghose, 2008; Krishnanand and Ghose, 2009a) make it more applicable to be used in 
many application areas such as hazard sensing in ubiquitous environments (Krishnanand and Ghose, 
2008), mobile sensor networks and robotics (Krishnanand and Ghose, 2005), and data clustering (Aljarah 
and Ludwig, 2013a). 

Most swarm intelligence algorithms solve an optimization problem with a global solution that is 
easier than finding multiple solutions. However, GSO is differentiated by its ability to perform a 
simultaneous search of multiple solutions, and is therefore the perfect solution for solving multimodal 
functions. Multimodal functions (Barrera and Coello, 2009) are functions that have multiple peaks (local 
maxima) with different or equal objective values. The optimization of multimodal functions aims to find 
all maxima based on some constraints. High dimensional spaces increase the peaks count, which leads to 
each function evaluation requiring longer execution times in order to find optimal target peaks. Solving 
multimodal functions requires the swarm to have the ability of dividing itself into separated groups. 
Moreover, the number of individuals has to be increased to share more local information for locating 
more peaks. To tackle the high computation time for these situations, the algorithm must be parallelized 
in an efficient way to find the peaks in an acceptable amount of time. 

An efficiently parallelized algorithm has a shorter execution time; however, depending on the 
nature of the algorithm some problems can be encountered such as communication inefficiency, or unfair 
load balancing, which make the process of scaling of the algorithm to large numbers of processors very 
difficult. Moreover, another cause of reduced scalability of the algorithm is node failure. Therefore, the 
parallel algorithm should handle large amounts of data and scale well with increasing numbers of 
compute nodes while maintaining high quality results. 

One programming model that was developed by Google is MapReduce. MapReduce has recently 
become a very favorable model for parallel processing compared to the message passing interface 
parallelization technique (Snir et al., 1995). The strength of the MapReduce methodology is that no 
knowledge of parallel programming is required to perform the parallelization process. In addition, there 
are special characteristics that distinguish the MapReduce methodology such as fault-tolerance, load 
balancing, and data locality. 

Apache Hadoop MapReduce (Apache, 2011) is another implementation of MapReduce besides 
Google's implementation and Disco (Disco, 2011). MapReduce is a highly scalable and most applicable 
model when considering a data-intensive task. When computing resources have restrictions on 
multiprocessing and large shared-memory hardware, MapReduce is the most applicable and is therefore 
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adopted by many companies in industry (e.g., Facebook (Facebook, 2011), and Yahoo (Yahoo, 2011)). In 
academia, researchers benefit from MapReduce for scientific computing, such as in the areas of 
Bioinformatics (Gunarathne et al., 2010), and Geosciences (Krishnan et al., 2010), where codes are 
written as MapReduce programs. The two core functions of MapReduce are: the Map function and 
Reduce function, which are used to formulate the problem as a functional procedure.  

The main idea is the data mapping into a list of <key, value>, and then applying the reducing 
operation over all pairs with the same key. The map function iterates over a large number of input units 
and processes them to extract intermediate output from each input unit, and all output values that have the 
same key are sent to the same reduce function. Thereafter, the reduce function collects the intermediate 
results with the same key that is retrieved by the map function, and then generates the final results. 

Apache Hadoop was developed in order to effectively deal with massive amounts of data or data-
intensive applications. Hadoop's good scalability is one of its strengths; it works with one machine, and 
can grow quickly to thousands of computer nodes, which can be commodity hardware. Apache Hadoop 
consists of two main components: Hadoop Distributed File System (HDFS), which is used for data 
storage, and MapReduce, which is used for data processing. HDFS provides a high-throughput access to 
the data while maintaining fault tolerance. It replicates multiple copies of data blocks to avoid failure 
node issues. MapReduce works together with HDFS to provide the ability to move the computation to the 
data, and thus maintaining data locality. 

In this paper, a parallel glowworm swarm optimization algorithm is proposed using the 
MapReduce methodology. The purpose of applying MapReduce to glowworm swarm optimization goes 
further than merely utilizing hardware. The parallelization of the algorithm enables difficult multimodal 
functions with high dimensionality to be evaluated, which is not possible using the sequential GSO 
approach.  

This paper presents a parallel Glowworm swarm optimization (MR-GSO) algorithm based on the 
MapReduce framework making the following key contributions:  

• The MapReduce concept is successfully applied to the GSO algorithm.  

• The evaluation of large-scale multimodal functions with high dimensions is demonstrating the 
scalability and speedup of the algorithm with good optimization quality.  

• An overhead analysis is performed to find the MapReduce framework overhead percentage when 
running the GSO algorithm. 

The remainder of this paper is organized as follows: Section 2 presents the related work in the 
area of parallel optimization algorithms. In Section 3, the GSO approach is introduced as well as our 
proposed MR-GSO algorithm. Section 4 presents the experimental evaluation, and Section 5 presents our 
conclusions. 

 

Related Work 
The parallelization of optimization algorithms has received much attention by reducing the run 

time for solving large-scale problems (Venter and Sobieszczanski-Sobieski, 2005; Ismail, 2004). Parallel 
algorithms make use of multiple processing nodes in order to achieve a speedup as compared to running 
the sequential version of the algorithm on only one processor (Grama et al., 2003). Many parallel 
algorithms have been proposed to address the challenges of implementing optimization algorithms.  

Many of the existing algorithms in literature apply the Message Passing Interface (MPI) 
methodology (Snir et al., 1995). In (Ismail, 2004), a parallel genetic algorithm was proposed using the 
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MPI library on a Beowulf Linux Cluster with the master slave paradigm. In (Venter and Sobieszczanski-
Sobieski, 2005), an MPI-based parallel PSO algorithm was introduced.  

MapReduce (Dean and Ghemawat, 2004) is easier to understand, while MPI (Snir et al., 1995) is 
somehow more complicated since it has many instructions. However, MPI can reuse parallel processes on 
a finer granularity level. MapReduce communicates between the nodes by disk operations (the shared 
data is stored in a distributed file system such as HDFS), which is faster than local file systems, while 
MPI communicates using the message passing model. MapReduce provides fault-tolerance of node 
failures, while MPI processes are terminated when a node fails. 

In (McNabb et al., 2007), MRPSO incorporated the MapReduce model to parallelize PSO by 
applying it on computationally data intensive tasks. The authors presented a radial basis function as the 
benchmark for the evaluation of their MRPSO approach, and verified that MRPSO is a good approach for 
optimizing data-intensive functions.  

In (Jin et al., 2008), the authors made an extension of the genetic algorithm with the MapReduce 
model, and successfully proved that the genetic algorithm can be easily parallelized with the MapReduce 
methodology. In (Wu et al., 2012), the authors proposed a MapReduce-based ant colony approach. They 
showed how ant colony optimization can be modeled with the MapReduce framework. They designed 
and implemented their algorithm using Hadoop. 

In (Wu et al., 2012), the authors introduced a new ACO algorithm using the MapReduce 
methodology. They showed how ACO optimization can be modeled and enhanced when the MapReduce 
framework is involved in the algorithm design. Their experiments were conducted with different types of 
optimization problems such as the 0-1 knapsack problem and the TSP (Traveling Salesman Problem), and 
showed the effectiveness of their MapReduce implementation. 

In (Tan et al., 2012), the authors presented another ACO MapReduce based algorithm using the 
Max-Min technique to show how MapReduce's capability reflects on the algorithm's scalability. The 
results showed that their algorithm achieved better results compared to the traditional Max-Min ACO 
version. 

A MapReduce-based differential evolution approach was proposed in (Zhoun, 2010) to enhance 
the algorithm's scalability. The algorithm divided the population into multiple partitions and after that 
each partition was assigned to the task for updating the sub-population in each partition. The 
computational time of the algorithm was reduced compared to the sequential version. 

Most MapReduce implementations were used to optimize single objective functions, whereas in 
our proposed algorithm, the algorithm searches for multiple maxima for difficult multimodal functions. In 
(Aljarah and Ludwig, 2013b), we proposed MR-GSO and made preliminary experiments with multimodal 
functions with low number of dimensions. In this paper, we expanded the experiments with higher 
dimensional multimodal functions to prove that the MR-GSO is scalable and efficient. In addition, we 
analyzed the efficiency of the MapReduce implementation by investigating the time spent in the map 
phase and in the reduce phase in order to quantify the overhead produced by the Hadoop framework. 
 

Proposed Approach 

Introduction to Glowworm Swarm Optimization 
Glowworm swarm optimization (GSO) is a swarm intelligence method first introduced by 

Krishnanand and Ghose in 2005 (Krishnanand and Ghose, 2005). The swarm in the GSO algorithm is 
composed of N individuals called glowworms. A glowworm i has a position Xi(t) at time t in the function 
search space, a light emission which is called a luciferin level Li(t), and a local decision range rdi(t). The 
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luciferin level is associated with the objective value of the individual's position based on the objective 
function J. 

A glowworm that emits more light (high luciferin level) implies that it is closer to an actual better 
position and has a high objective function value. A glowworm is attracted by other glowworms whose 
luciferin level is higher than its own within the local decision range. If the glowworm finds some 
neighbors with a higher luciferin level that are within its local range, the glowworm moves towards them. 
At the end of the process, most glowworms will gather at the multiple peak locations in the search space.  

The GSO algorithm consists of four main stages: glowworm initialization, luciferin level update, 
glowworm movement, and glowworm local decision range update.  

In the first stage, N glowworms are randomly deployed in the specific objective function search 
space. In addition, in this stage the constants that are used for the optimization are initialized, and all 
glowworms' luciferin levels are initialized with the same value (L0). Furthermore, local decision range rd 
and radial sensor range rs are initialized with the same initial value (r0). 

The luciferin level update is considered the most important step in the glowworm optimization 
process since the objective function is evaluated at the current glowworm position (Xi). The luciferin level 
for all swarm members are modified according to the objective function values. The process for the 
luciferin level update is done with the following equation: 

 𝐿! 𝑡 = 1 − 𝜌 𝐿! 𝑡 − 1 + 𝛾𝐽(𝑋!(𝑡) (1) 

where Li(t) and Li(t-1) are the new luciferin level and the previous luciferin level for glowworm i, 
respectively, ρ is the luciferin decay constant (ρ ϵ (0,1)), γ is the luciferin enhancement fraction, and 
J(Xi(t)) represents the objective function value for glowworm i at current glowworm position (Xi) at 
iteration t. 

After that and throughout the movement stage, each glowworm i tries to extract the neighbor 
group Ni(t) based on the luciferin levels and the local decision range (rd) using the following rule: 

 𝑗 ∈ 𝑁! 𝑡       iff      𝑑!" < 𝑟𝑑! 𝑡       𝑎𝑛𝑑      𝐿! 𝑡 >   𝐿! 𝑡  (2) 

where j is one of the glowworms close to glowworm i, Ni(t) is the neighbor group, dij is the 
Euclidean distance between glowworm i and glowworm j, rdi(t) is the local decision range for glowworm 
i, and Lj(t) and Li(t) are the luciferin levels for glowworm j and i, respectively. 

After that, the actual selected neighbor is identified by two operations: the probability calculation 
operation to figure out the movement direction toward the neighbor with the higher luciferin value. This 
is done by applying the following equation: 

 𝑃𝑟𝑜𝑏!" =
!! ! !!! !

!! ! !!! !!∈!!(!)
 (3) 

where j is one of the neighbor group Ni(t) of glowworm i. The denominator in Equation (3) can 
be zero if the glowworm i doesn’t have neighbors, and in this case the glowworm i preserves its location 
without any change. 

 

After the probability calculation, in the second operation, glowworm i selects a glowworm from 
the neighbor group using the roulette wheel method whereby the higher probability glowworm has more 
chance to be selected from the neighbor group.  

 
 



IGI	
  Global	
  Microsoft	
  Word	
  2007	
  Template	
  

Reference	
  templateInstructions.pdf	
  for	
  detailed	
  instructions	
  on	
  using	
  this	
  document.	
  

 
 
 
Then, at the end of the glowworm movement stage, the position of the glowworm is modified based on 
the selected neighbor position using the following equation: 

 𝑋! 𝑡 = 𝑋! 𝑡 − 1 + 𝑠 !! ! !!! !
!!"

 (4) 

where Xi(t) and Xi(t-1) are the new position and previous position for glowworm i, respectively, s 
is a step size constant, and 𝛿!" is the Euclidean distance between glowworm i and glowworm j. 

The last stage of GSO, is the local decision range update, where the local decision range rdi is 
updated in order to add flexibility to the glowworm to formulate the neighbor group in the next iteration. 
The following equation is used to update rdi in the next iteration: 

 𝑟𝑑! 𝑡 = min  {𝑟𝑠,max 0, 𝑟𝑑! 𝑡 − 1 + 𝛽 𝑛𝑡 − 𝑁! 𝑡 − 1 } (5) 

where rdi(t) and rdi(t-1) are the new local decision range, and the previous local decision range 
for glowworm i, respectively, rs is the constant radial sensor range, β is a model constant, nt is a constant 
parameter used to control the neighbor count, and |Ni(t)| is the actual number of neighbors. 

 

Proposed MapReduce GSO Algorithm (MR-GSO) 
The grouping nature of GSO makes it an ideal candidate for parallelization. Based on the 

sequential procedure of glowworm optimization discussed in the previous section, we can employ the 
MapReduce model. MR-GSO consists of two main phases: Initialization phase, and MapReduce phase.  

In the initialization phase, an initial glowworm swarm is created. For each glowworm i, a random 
position vector (Xi) is generated using uniform randomization within the given search space. Then, the 
objective function J is evaluated using the Xi vector. After that, the luciferin level (Li) is calculated by 
Equation (1) using the initial luciferin level L0, J(Xi), and other given constants. The local decision range 
rd is given an initial range r0. After the swarm is updated with this information, the glowworms are stored 
in a file on the distributed file system as a <Key, Value> structure, where Key is unique glowworms ID i, 
and Value is the glowworm information, which will be described below and shown in Figure 1.  

 
Figure 1: Glowworm Representation Structure 

 

As shown in Figure 1, the main glowworm components are delimited by semicolon, while the 
position Xi vector component is delimited by comma, where m is the number of dimensions used. The 
initial stored file is used as input for the first MapReduce job in the MapReduce phase. 
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In the second phase of MR-GSO, an iterative process of MapReduce jobs is performed where 
each MapReduce job represents iteration in the GSO. The result of each MapReduce job is an updated 
glowworm swarm with updated information, which is then used as the input for the next MapReduce job.  

  

 

During each MapReduce job, the algorithm benefits from the power of the MapReduce model for 
the time consuming stages of the luciferin level update and glowworm movement. In the movement stage, 
each glowworm i extracts the neighbor group Ni(t) based on Equation (2), which requires distance 
calculations and luciferin level comparisons between each glowworm and other swarm members to locate 
the neighbor group. This process is executed N2 times, where N is the swarm size. The neighbor group 
finding process is accomplished by the map function that is part of a MapReduce job.  

Before the neighbor group finding process is done in the Map function, a copy of the stored 
glowworm swarm (TempSwarm) is retrieved from the distributed file system, which is a feature provided 
by the MapReduce framework for storing files. In addition, the other information such as the GSO 
constants s, ρ, γ, β, nt, and rs that are used for the GSO movement equations, are retrieved from the job 
configuration file. 

After that, the neighbor group finding process is started when the Map function receives <Key, 
Value> from the MapReduce job, where Key is the glowworm ID i and Value is the glowworm 
information. However, the Map function processes the Value by breaking it into the main glowworm 
components (Xi, J(Xi), Li, and rdi), which are used inside the Map function. Then, a local iterative search 
is performed on TempSwarm to locate the neighbor group using Equation (2). After that, the neighbor 
probability values are calculated based on Equation (3) to find the best neighbor using the roulette wheel 
selection method. At the end of the Map operation, the Map function emits the glowworm ID i with its 
Value and glowworm ID i with the selected neighbor position vector (Xj) to the Reduce function. The 
Map function works as shown in Algorithm 1 outlining the pseudo code of the Map operation.  

As an intermediate step in the MapReduce job, the emitted intermediate output from the mapper 
function is partitioned using the default partitioner by assigning the glowworms to the reducers based on 
their IDs using the modulus hash function.  

The Reduce function in the MapReduce job is responsible for updating the luciferin level Li, 
which is considered the most expensive step in the glowworm optimization, since in this stage the 
objective function is evaluated for the new glowworm position. The luciferin level updating process is 
started when the Reduce function receives < Key, ListofValues> from the Map function where Key is the 
glowworm ID and ListofValues contains the glowworm value itself and its best neighbor position (Xj). 
The reduce function extracts the neighbor position vector (Xj) and glowworm information (Xi, J(Xi), Li, 
and rdi). Then, the updating of the glowworm position vector is done using Equation (4). After that, the 
objective function is evaluated using the new glowworm position vector, and then the luciferin level is 
updated using Equation (1). Also, rdi is updated using Equation (5). At the end, the Reduce function emits 
the glowworm ID i with the newly updated glowworm information. The pseudo-code of the Reduce 
function is shown in Algorithm 2. 

At the end of the MapReduce job, the new glowworm swarm replaces the previous swarm in the 
distributed file system, which is used by the next MapReduce job. 
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Experiments and Results 
In this section, we describe the optimization quality and discuss the running time of the 

measurements for our proposed algorithm. We focus on scalability in terms of speedup and also on the 
optimization quality. 

Environment 
We ran the MR-GSO experiments on the Longhorn Hadoop cluster hosted by the Texas 

Advanced Computing Center (TACC1), which is one of the common Hadoop clusters that is used by 
researchers. The Longhorn Hadoop cluster contains 384 compute cores and 2.304 TB of aggregated 
memory capacity. The Longhorn Hadoop cluster has 48 nodes containing 48GB of RAM, 8 Intel 
Nehalem cores (2.5GHz each). For our experiments, we used Hadoop version 0.20 (new API) for the 
MapReduce framework, and Java runtime 1.6 to implement the MR-GSO algorithm. 

Benchmark Functions 
To evaluate our MR-GSO algorithm, we used three multimodal benchmark functions. The 

benchmark functions are the following (Engelbrecht et al., 2012, Qu et al., 2014): 

• F1: The Equal-peaks-B function is a highly multimodal function in the m-dimensional search 
space. All local maxima of the Equal-peaks-A function have equal function values. The function 
search space ( !

!
≤ 𝑋i≤

!
!
 ) is used, where 𝑋i is the m-dimensional vector and  i = 1,...,m. The 

Equal-peaks-B function has 2m peaks like the Rastrigin function. The function has the following 
definition: 
 

 𝐹! 𝑋! = [𝑠𝑖𝑛!(!
!!! 𝑋!)] (6) 

 

• F2: The Rastrigin function is a highly multimodal function with the locations of the minima and 
maxima regularly distributed. This function presents a fairly difficult problem due to its large 
search space and its large number of local minima and maxima. We restricted the function to the 
hypercube ( −1 ≤ 𝑋i≤ 1 ); i = 1 ... m. The function has 2m peaks such as for m=2 dimensions, the 
function has 4 peaks within the given range. The function has the following definition: 

 𝐹! 𝑋! = 10𝑚 + [𝑋!! − 10cos  (2π!
!!! 𝑋!)] (7) 

• F3: The Composition function is a very difficult multimodal function, which is constructed based 
on eight basic functions in the m-dimensional search space and contains different functions’ 
properties. The functions that are used to form this benchmark are Rastrigin, EF8F2, Weierstrass, 
and Griewank. Two versions from each basic function are used to construct the composition 
function, the original and rotated versions. We restricted the function to the hypercube (−5 ≤
𝑋i≤  5 ); i = 1 ... m. The function has 8 peaks within the given range. For more details regarding 
this function, refer to (Engelbrecht et al., 2012). 

 

Evaluation Measures 
In our experiments, we used the parallel Speedup (Grama, 2003) measure to evaluate the 

performance of our MR-GSO algorithm, which is calculated using the following equation: 
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 Speedup= !!
!!

 (8) 

where T2 is the running time using 2 nodes, and Tn is the running time using n nodes, where n is a 
multiple of 2. 

The speedup is obtained by fixing the swarm size while increasing the number of cluster nodes to 
evaluate the algorithm's ability to scale with increasing numbers of cluster nodes. 

For the optimization quality, we use the Peaks Capture Rate (PCR) and the average minimum 
distance to the peak locations (Davg) (Krishnanand and Ghose, 2009b). A peak is considered captured if 
there are three glowworms near it with distance less than or equal ϵ. In this paper, we used the distance ϵ 
= 0.05 as recommended in (Krishnanand and Ghose, 2009b). 

PCR is given by the following equation: 

 PCR= !"#$%&  !"  !"#$%$  !"#$%&'(
!"#$%&  !"  !""  !"#$%

×100% (9) 

	
  
The average minimum distance to the peak locations Davg is given by the following 

equation: 

 𝐷!"# =
!
!
× min{!!!!!}{𝑑!!… 𝑑!"}!

!!!  (10) 

 

where 𝛿!" is the Euclidean distance between the location of glowworm Xi and Sj; Xi and Sj are the 
locations of glowworm i and peak j, respectively, and Q is the number of available peak locations; N is 
the number of glowworms in the swarm. 

The best result will be achieved with high PCR and low Davg values. For example, if we obtain a 
low Davg and a low PCR, this means that the glowworms gathered only on a few peaks and did not capture 
other peaks. A high PCR, close to 100%, means that MR-GSO captured most of the peaks, whereas a low 
Davg, close to zero, implies that all glowworms are close to the peaks, and thus, this ensures a gathering of 
the glowworms at the peak locations. 

We used the GSO settings that are recommended in (Krishnanand and Ghose, 2009b). We used 
the luciferin decay constant ρ=0.4; the luciferin enhancement constant γ=0.6; the constant parameter 
β=0.08; the parameter used to control the number of neighbors nt=5; the initial luciferin rate L0=5.0; the 
step size s=0.03. In addition, the local decision range rd and the radial sensor range rs are problem-based 
values. In our experiments, the local decision range rd is kept constant (rs=rd=r0) throughout the 
optimization process. Preliminary experiments were done to decide whether to use an adaptive or constant 
rd. The constant rd achieved better results, since it ensures that the glowworm moves even if it has many 
neighbors. If there are many neighbors around, then the glowworm keeps moving towards the peaks, 
unlike the adaptive rd, where if the glowworm has many neighbors, it does not move and therefore, the 
new rd is 0 based on Equation (5). The best r0 values for the given benchmark functions are chosen based 
on preliminary experiments. For the PCR and Davg measurements, the average of 25 independent runs was 
calculated.  
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Results 
To evaluate the MR-GSO algorithm, the experiments are done measuring PCR, Davg, running 

time, and speedup for the mentioned benchmarks. In addition, the MapReduce overhead is also 
investigated. We will investigate the measures applied to all three benchmark functions. Figures 2 to 8 
show the results for benchmark function F1, Figures 9-15 show the results for benchmark function F2, 
and Figures 16 to 19 show the results for benchmark function F3. 

Figure 2 shows the optimization quality results for the F1 function with 2 dimensions. The PCR 
and Davg for every iteration using different numbers of swarm sizes (starting from 10,000 to 60,000) are 
presented. As can be noted from Figure 2(a), the PCR is improving for increasing swarm sizes. In 
addition, the number of iterations needed to capture all peaks is reduced, such as, the PCR converges to 
100% with a swarm size of 10,000 at iteration 2, while with a swarm size of 60,000 the PCR converges at 
iteration 1. Also, Figure 2(b) shows that the average minimum distance is improved (reduced) when the 
swarm size is increased maintaining low values for all swarm sizes. 

 

 

 

 

 

 

 

 

 

 

Figure 2: Optimization process for Equal-peaks-B function (F1) using 2 dimensions with 200 
iterations, and r0=2.0. 2(a) Peaks capture rate. 2(b) Average minimum distance. 

 

The optimization quality results for the F1 function with 3 dimensions are shown in Figure 3. 
Figure 3(a) clarifies the impact of the swarm size on the PCR. However, 19 iterations are needed to 
capture 100% of the peaks with a swarm size of 10,000, while with a swarm size of 60,000 the PCR 
converges to 100% at iteration 13. Also, Figure 3(b) shows that larger swarm sizes give better average 
minimum distance results maintaining low values for all swarm sizes. 
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Figure 3: Optimization process for Equal-peaks-B function (F1) using 3 dimensions with 200 
iterations, and r0=2.0. 3(a) Peaks capture rate. 3(b) Average minimum distance. 

 

Figure 4 shows the results for peaks capture rate and the average minimum distance for the F1 
function with 4 dimensions. We note that 37 iterations capture 100% of the peaks with a swarm size of 
10,000, while with a swarm size of 60,000 the PCR converges to 100% at iteration 27. Furthermore, the 
average minimum distance results maintain low values for all swarm sizes. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Optimization process for Equal-peaks-B function (F1) using 4 dimensions with 200 
iterations, and r0=2.0. 4(a) Peaks capture rate. 4(b) Average minimum distance. 
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The PCR results for the F1 function with 5 dimensions are shown in Figure 5. MR-GSO needs 86 
iterations to capture 100% of the peaks with 10,000 glowworms, but with 60,000, the PCR achieved 
100% peaks capture rate at iteration 46. In addition, the average minimum distance results in Figure 5(b) 
show the best results with 60,000 glowworms. 

 

 

 

 

 

 

 

 

 

 

Figure 5: Optimization process for Equal-peaks-B function (F1) using 5 dimensions with 200 
iterations, and r0=2.0. 5(a) Peaks capture rate. 5(b) Average minimum distance. 

The optimization quality results for the F1 function with 6, 7 and 8 dimensions are shown in 
Figures 6 to 8, respectively. All curves demonstrate the impact of the swarm size on the PCR, especially 
with increasing dimensions. In Figure 6(b), the peak capture rate results for 6 dimensions show that 200 
iterations are needed to capture 93.75% of the peaks with a swarm size of 10,000, while 81 iterations with 
60,000 glowworms are needed to capture 100%. Furthermore, using 7 dimensions, 200 iterations capture 
22.66% of the peaks with a swarm size of 10,000, while with a swarm size of 60,000 the PCR converges 
to 100% at iteration 140 as shown in Figure 7. In Figure 8, the results with 8 dimensions are given. The 
results show that 200 iterations capture 2.73% of the peaks with a swarm size of 10,000, while with a 
swarm size of 60,000 the PCR converges to 64.84% at iteration 200. 

 

 

 

 

 

 

 

 

 

 

Figure 6: Optimization process for Equal-peaks-B function (F1) using 6 dimensions with 200 
iterations, and r0=2.0. 6(a) Peaks capture rate. 6(b) Average minimum distance. 
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Figure 7: Optimization process for Equal-peaks-B function (F1) using 7 dimensions with 200 
iterations, and r0=2.0. 7(a) Peaks capture rate. 7(b) Average minimum distance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Optimization process for Equal-peaks-B function (F1) using 8 dimensions with 200 
iterations, and r0=2.0. 8(a) Peaks capture rate. 8(b) Average minimum distance. 
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Figure 9 to 15 show the optimization quality results for the F2 function with 2, 3, 4, 5, 6, 7 and 8 
dimensions, respectively. Figure 9(a) shows that 1 iteration captures 100% of the peaks for 2 dimensions 
for all swarm sizes. The PCR results with 3 dimensions in Figure 10(a) show that 3 iterations capture 
100% of the peaks with a swarm size of 10,000, while with a larger swarm size (60,000), the PCR 
converges to 100% at iteration 1. Furthermore, in Figure 11(a), 10 iterations capture 100% of the peaks 
with 10,000 glowworms, while PCR converges to 100% at iteration 6 with 60,000 glowworms. However, 
23 iterations capture 100% of the peaks with 10,000 glowworms with 5 dimensions, while with a swarm 
size of 60,000 the PCR converges to 100% at iteration 14 with the same dimension. Lastly, the PCR 
results using 10,000 with 6,7, and 8 dimensions show that 200 iterations capture 98.44%, 16.41%, and 
0.0% of the peaks, respectively. The PCR results using 60,000 with 6, and 7 dimensions show that 200 
iterations capture 100.00%, while with 8 dimensions, PCR converges to 60.94%. 

 

 

 

 

 

 

 

 

 

 

Figure 9: Optimization process for Rastrigin function (F2) using 2 dimensions with 200 iterations, 
and r0=0.5. 9(a) Peaks capture rate. 9(b) Average minimum distance. 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Optimization process for Rastrigin function (F2) using 3 dimensions with 200 iterations, 
and r0=0.5. 10(a) Peaks capture rate. 10(b) Average minimum distance. 
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Figure 11: Optimization process for Rastrigin function (F2) using 4 dimensions with 200 iterations, 
and r0=0.5. 11(a) Peaks capture rate. 11(b) Average minimum distance. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: Optimization process for Rastrigin function (F2) using 5 dimensions with 200 iterations, 
and r0=0.5. 12(a) Peaks capture rate. 12(b) Average minimum distance. 
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Figure 13: Optimization process for Rastrigin function (F2) using 6 dimensions with 200 iterations, 
and r0=0.5. 13(a) Peaks capture rate. 13(b) Average minimum distance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Optimization process for Rastrigin function (F2) using 7 dimensions with 200 iterations, 
and r0=0.5. 14(a) Peaks capture rate. 14(b) Average minimum distance. 
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Figure 15: Optimization process for Rastrigin function (F2) using 8 dimensions with 200 iterations, 
and r0=0.5. 15(a) Peaks capture rate. 15(b) Average minimum distance. 
  

Figures 16 to 19 show the optimization quality results for the F3 function with 2, 3, 4, and 5 
dimensions, respectively. Figure 16(a) shows that 20 iterations capture 100% of the peaks with a swarm 
size of 10,000, while with a larger swarm size (60,000) the PCR converges to 100% at iteration 1 already. 
The PCR results for 3 dimensions in Figure 17(a) show that 200 iterations capture 50% of the peaks with 
a swarm size of 10,000, while with a larger swarm size (60,000) the PCR converges to 87.5% at iteration 
200. Lastly, the PCR results using 10,000 with 4 and 5 dimensions show that 200 iterations capture 0% of 
the peaks. On the other hand, the PCR results using 60,000 with 4 dimensions show that 200 iterations 
capture 62.5%, while with 5 dimensions PCR converges to 37.5%. 

 

 

 

 

 

 

 

 

 

 
	
    

  

Figure 16: Optimization process for Composition function (F3) using 2 dimensions with 200 
iterations, and r0=0.6. 16(a) Peaks capture rate. 16(b) Average minimum distance. 
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Figure 18: Optimization process for Composition function (F3) using 4 dimensions with 200 
iterations, and r0=3.0. 18(a) Peaks capture rate. 18(b) Average minimum distance. 

 

 
Figure 17: Optimization process for Composition function (F3) using 3 dimensions with 200 
iterations, and r0=0.9. 17(a) Peaks capture rate. 17(b) Average minimum distance. 
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We ran MR-GSO with a maximum of 32 cluster nodes by increasing the number of nodes in each 
run starting at 2. In each run, we report the running time and speedup (average of 25 iterations) of MR-
GSO. The running time and speedup results for the Equal-peaks-B function (F1) with 8 dimensions are 
shown in Figure 20. Figures 20(a), 20(c), and 20(e) show the running times for the 3 swarm sizes of 
100,000, 200,000, and 300,000 glowworms, respectively. The number of glowworms is equally 
distributed among the computational nodes used. As can be seen by all figures, the running time reduces 
faster at the beginning than at the end when increasing the number of nodes. Furthermore, the impact of 
the swarm size on the running time is well observed. Running the algorithm on 2 nodes takes 505.02, 
1978.98, and 4388.89 seconds for 100,000, 200,000, and 300,000 glowworms, respectively.   

In Figures 20(b), 20(d), and 20(f), the speedup results using different swam sizes with different 
numbers of nodes are shown, highlighting the scalability of the algorithm. As can be derived from the 
figures, the speedup for N=100,000 was very close to the linear speedup (optimal scaling) using 4, and 8 
nodes. The same behavior is observed for N=200,000 and N=300,000. For N=200,000, the speedup is 
very close to the linear one using 2, 8, and 16 nodes, but it diverges from the optimal line with a smaller 
difference compared to N=100,000. For N=300,000, the speedup is close to the linear one with 16 nodes, 
then it starts to drift away for 32 nodes, but comparing this difference with the one using N=200,000 and 
N=100,000 is much smaller. In addition, the improvement factor of MR-GSO's running times for the 
swarm sizes of N=100,000, N=200,000 and N=300,000 are 5.23, 10.55, 12.54 respectively, compared to 
the running time using 2 nodes. 

 

 

 

 

  

Figure 19: Optimization process for Composition function (F3) using 5 dimensions with 200 
iterations, and r0=5.0. 19(a) Peaks capture rate. 19(b) Average minimum distance. 
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Figure 21 shows the running time and speedup results for the Rastrigin function (F2) with 8 
dimensions. Figure 21(a) shows the running for the swarm size of 100,000. As more number of nodes are 
available (more hardware resources), the running time decreases. The same trend happens with 200,000, 
and 300,000 in the Figures 21(c), and 21(e), respectively. Running the algorithm on 2 nodes takes 505.39, 
1967.18, and 4399.39 seconds for 100,000, 200,000, and 300,000 glowworms, respectively. 

Figures 21(b), 21(d), and 21(f) show the algorithm speedup curve for the Rastrigin function (F2) 
and how an algorithm scales with respect to the linear speedup. The speedup values obtained with a 
swarm size of 100,000 with our proposed algorithm are almost linear up to 8 nodes such as the speedup is 
3.7 for 4 nodes, 6.5 for 8 nodes, 10.2 for 16 nodes, and 12.9 for 32 nodes. For 200,000 glowworms, as 
shown in Figure 17(d), the speedup is close to the linear such as the speedup is 3.9 for 4 nodes, 7.3 for 8 
nodes, 14.0 for 14 nodes, and 21.9 for 32, which are better speedup values compared to the swarm size of 
100,000. For 300,000 glowworms as shown in Figure 21(f), the proposed algorithm achieves an almost 
linear speedup with 3.9 for 4 nodes, 7.7 for 8 nodes, 14.5 for 14 nodes, and 24.5 for 32, which are better 
speedup results compared to the swarm sizes of 100,000, and 200,000. 
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(a) Running Time with N=100,000  (b) Speedup with N=100,000 

 

 

 

 

 

 

 
(c) Running Time with N=200,000  (d) Speedup with N=200,000 

 

 

 

 

 

 

 
(e) Running Time with N=300,000   (f) Speedup with N=300,000 

Figure 20: Running time and speedup results for Equal-peaks-B function (F1) with 8 dimensions. 
20(b), 20(d) and 20(f): Running time with N=100,000, N=200,000 and N=300,000, respectively. 
20(a), 20(c) and 20(e): Speedup with N=100,000, N=200,000 and N=300,000, respectively.  
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(a) Running Time with N=100,000   (b) Speedup with N=100,000 

 

 

 

 

 

 

 

 

 

(c) Running Time with N=200,000  (d) Speedup with N=200,000 

 

 

 

 

 

 

 

 

 

(e) Running Time with N=300,000   (f) Speedup with N=300,000 

Figure 21: Running time and speedup results for Rastrigin function (F2) with 8 dimensions. 
21(a), 21(c) and 21(e): Running time with N=100,000, N=200,000 and N=300,000, 
respectively. 21(b), 21(d) and 21(f): Speedup with N=100,000, N=200,000 and N=300,000, 
respectively. 
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As we noted from the speedup figures, the system speedup diverges from the linear 
speedup when larger number of nodes are used. This happens because of the overhead of the 
Hadoop framework. The Hadoop framework introduces overhead due to the management of 
starting MapReduce jobs, starting mappers/reducers operations, serializing/deserializing 
intermediate outputs, sorting, and storing the outputs to the distributed file system. The impact of 
the MapReduce overhead percentages for the Rastrigin function (F2) with 8 dimensions and 
using different swarm sizes with different numbers of nodes are presented in Figure 22. The red 
portion in each column represents the overhead running time and blue portion represents the 
actual time for the function computations. In addition, the overhead percentage is given on top of 
each column. Figure 22(a) shows the overhead percentages using 32 nodes. We note that as the 
swarm size increases from 100,000 to 300,000, the overhead percentage reduces such as the 
overhead percentage for 100,000 is 55.04%, while the overhead percentage for 300,000 is 
21.81% (less than half). The same trend is shown in Figures 22(b) to 22(e) using 10, 8, 4, and 2 
nodes, respectively. Therefore, we can conclude that each additional node at some point 
contributes to increasing the overhead. Some of the Hadoop overhead is unavoidable and we 
should find the optimal number of nodes for each experiment, which balances the overhead and 
the algorithm performance. Furthermore, the overhead of the Hadoop framework can be avoided 
when using larger numbers of swarm sizes, and thus the speedup is closer to the optimal one. 
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Figure 22: Overhead percentages for the Rastrigin function (F2) with 8 dimensions using different 
swarm sizes. 22(a): Overhead percentage using 32 nodes. 22(b): Overhead percentage using 16 
nodes. 22(c): Overhead percentage using 8 nodes. 22(d): Overhead percentage using 4 nodes. 22(e): 
The Overhead percentage using 2 nodes. 

 
(a) Overhead percentage with 32 nodes  (b) Overhead percentage with 16 nodes 

 
 

 
 

(c) Overhead percentage with 8 nodes  (d) Overhead percentage with 4 nodes 
 

 
 (e) Overhead percentage with 2 nodes 
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Conclusion 
This paper introduced a MapReduce-enabled Glowworm Swarm Optimization (MR-GSO) 

algorithm for multimodal function optimization. GSO is particular useful for multimodal function 
optimization since it searches for multiple optima. MR-GSO parallelizes the GSO approach by 
implementing the map and reduce functions. The map function is responsible for the neighborhood 
calculations whereas the reduce function performs the luciferin level and the glowworm movement 
update. Two multimodal benchmark problems were evaluated for 2 to 8 dimensions in increments of 1. 
The first part of the evaluation captured the peak capture rate and the minimum distance for the different 
dimensions using different swarm sizes (10,000 and 60,000 in increments of 10,000). The measurements 
showed that with increasing dimensionality and difficulty of the benchmark problem larger swarm sizes 
are needed in order for the algorithm to find all peaks. The second part of the evaluation measured the 
running time and speedup of the MR-GSO algorithm. The number of computational nodes was scaled 
from 2 to 32 with double increments. The results showed that for both benchmark functions with the 
highest number of glowworms, the speedup was close to the linear speedup showing a good utilization of 
the parallel implementation of MR-GSO. In addition, the overhead of the Hadoop infrastructure was 
investigated showing an increase for larger numbers of glowworms used. In addition, the overhead more 
drastically increased for increasing number of computational nodes used. For example, using 32 
computational nodes the overhead for 300,000 glowworms is 21.81%. Our future plan is to investigate the 
impact of the GSO settings on the optimization quality such as rs setting, and step size. Furthermore, we 
will apply the proposed algorithm on real world applications. 
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