
IGI	
 Global	
 Microsoft	
 Word	
 2007	
 Template	

Reference	
 templateInstructions.pdf	
 for	
 detailed	
 instructions	
 on	
 using	
 this	
 document.	

A Scalable MapReduce-enabled Glowworm Swarm
Optimization Approach for Higher Dimensional

Multimodal Functions

Ibrahim Aljarah

The University of Jordan

Amman, Jordan

Simone A. Ludwig

North Dakota State University

Fargo, ND, USA

Abstract
Highly multimodal function optimization is similar to many other optimization problems requiring many
iterations and large number of function evaluations. Glowworm Swarm Optimization (GSO) is one of the
common swarm intelligence algorithms, where GSO has the ability to optimize multimodal functions
efficiently. Locating the peaks of a high-dimensional multimodal function requires a large population,
which is considered time consuming when sequential algorithms are used. Moreover, increasing the
number of dimensions of a multimodal function usually increases the number of peaks exponentially.
Therefore, a parallelization of the GSO algorithm is necessary to reduce the long execution time for
capturing the peaks. In this paper, a parallel MapReduce-based GSO algorithm is proposed to speedup
the GSO optimization process. We argue that GSO can be formulated based on the MapReduce parallel
programming model quite naturally. In addition, we use higher dimensional multimodal benchmark
functions for evaluating the proposed algorithm. The experimental results show that the proposed
algorithm is appropriate for optimizing difficult multimodal functions with higher dimensions and
achieving high peak capture rates. Furthermore, a scalability analysis shows that the proposed algorithm
scales very well with increasing swarm sizes, and scales very close to the linear speedup while maintain
high peak capture rates. In addition, an overhead of the Hadoop infrastructure is investigated to find if
there is any relationship between the overhead, the swarm size, and number of nodes used.

Introduction
Optimization is the process of searching for the optimum solution from a set of candidate

solutions based on specific performance criteria. There are many different optimization techniques that
exist such as evolutionary computation and swarm intelligence.

Swarm intelligence (Engelbrecht, 2007) is an optimization technique that is inspired by processes
of natural swarms by simulating the behavior of natural swarms such as ant colonies, flocks of birds,

IGI	
 Global	
 Microsoft	
 Word	
 2007	
 Template	

Reference	
 templateInstructions.pdf	
 for	
 detailed	
 instructions	
 on	
 using	
 this	
 document.	

bacterial growth, and schools of fishes. The swarm behavior is based on the interactions between the
swarm members by exchanging local information to reach the target, for example, locating the food
source. However, instead of using the centralization concept in the swarm structure, all swarm members
are equally engaged to achieve the main objective.

There are many swarm intelligence methodologies such as Particle Swarm Optimization (PSO)
(Kennedy and Eberhart, 1997) which is inspired by bird flocks searching for optimal food sources, where
the direction in which a bird moves is influenced by its current movement, the best food source it ever
experienced, and the best food source any bird in the flock ever experienced. Ant Colony Optimization
(ACO) (Stuetzle, 2009) is based on the behavior of ants searching for the optimal shortest path between a
food source and the colony using the pheromone they leave while traveling through the paths. Bee Colony
Optimization (BCO) (Wong et al., 2008) mimics the food foraging behavior of honeybee colonies using a
combination of local and global searches.

Glowworm Swarm Optimization (GSO) (Krishnanand and Ghose, 2005) is inspired by the
behavior of glowworms or lighting worms. These glowworms control the emission of their light and use it
for different objectives such as attracting other worms during the breeding season. GSO's implementation
simplicity and the small number of required parameters to be tuned (Krishnanand and Ghose, 2005;
Krishnanand and Ghose, 2008; Krishnanand and Ghose, 2009a) make it more applicable to be used in
many application areas such as hazard sensing in ubiquitous environments (Krishnanand and Ghose,
2008), mobile sensor networks and robotics (Krishnanand and Ghose, 2005), and data clustering (Aljarah
and Ludwig, 2013a).

Most swarm intelligence algorithms solve an optimization problem with a global solution that is
easier than finding multiple solutions. However, GSO is differentiated by its ability to perform a
simultaneous search of multiple solutions, and is therefore the perfect solution for solving multimodal
functions. Multimodal functions (Barrera and Coello, 2009) are functions that have multiple peaks (local
maxima) with different or equal objective values. The optimization of multimodal functions aims to find
all maxima based on some constraints. High dimensional spaces increase the peaks count, which leads to
each function evaluation requiring longer execution times in order to find optimal target peaks. Solving
multimodal functions requires the swarm to have the ability of dividing itself into separated groups.
Moreover, the number of individuals has to be increased to share more local information for locating
more peaks. To tackle the high computation time for these situations, the algorithm must be parallelized
in an efficient way to find the peaks in an acceptable amount of time.

An efficiently parallelized algorithm has a shorter execution time; however, depending on the
nature of the algorithm some problems can be encountered such as communication inefficiency, or unfair
load balancing, which make the process of scaling of the algorithm to large numbers of processors very
difficult. Moreover, another cause of reduced scalability of the algorithm is node failure. Therefore, the
parallel algorithm should handle large amounts of data and scale well with increasing numbers of
compute nodes while maintaining high quality results.

One programming model that was developed by Google is MapReduce. MapReduce has recently
become a very favorable model for parallel processing compared to the message passing interface
parallelization technique (Snir et al., 1995). The strength of the MapReduce methodology is that no
knowledge of parallel programming is required to perform the parallelization process. In addition, there
are special characteristics that distinguish the MapReduce methodology such as fault-tolerance, load
balancing, and data locality.

Apache Hadoop MapReduce (Apache, 2011) is another implementation of MapReduce besides
Google's implementation and Disco (Disco, 2011). MapReduce is a highly scalable and most applicable
model when considering a data-intensive task. When computing resources have restrictions on
multiprocessing and large shared-memory hardware, MapReduce is the most applicable and is therefore

IGI	
 Global	
 Microsoft	
 Word	
 2007	
 Template	

Reference	
 templateInstructions.pdf	
 for	
 detailed	
 instructions	
 on	
 using	
 this	
 document.	

adopted by many companies in industry (e.g., Facebook (Facebook, 2011), and Yahoo (Yahoo, 2011)). In
academia, researchers benefit from MapReduce for scientific computing, such as in the areas of
Bioinformatics (Gunarathne et al., 2010), and Geosciences (Krishnan et al., 2010), where codes are
written as MapReduce programs. The two core functions of MapReduce are: the Map function and
Reduce function, which are used to formulate the problem as a functional procedure.

The main idea is the data mapping into a list of <key, value>, and then applying the reducing
operation over all pairs with the same key. The map function iterates over a large number of input units
and processes them to extract intermediate output from each input unit, and all output values that have the
same key are sent to the same reduce function. Thereafter, the reduce function collects the intermediate
results with the same key that is retrieved by the map function, and then generates the final results.

Apache Hadoop was developed in order to effectively deal with massive amounts of data or data-
intensive applications. Hadoop's good scalability is one of its strengths; it works with one machine, and
can grow quickly to thousands of computer nodes, which can be commodity hardware. Apache Hadoop
consists of two main components: Hadoop Distributed File System (HDFS), which is used for data
storage, and MapReduce, which is used for data processing. HDFS provides a high-throughput access to
the data while maintaining fault tolerance. It replicates multiple copies of data blocks to avoid failure
node issues. MapReduce works together with HDFS to provide the ability to move the computation to the
data, and thus maintaining data locality.

In this paper, a parallel glowworm swarm optimization algorithm is proposed using the
MapReduce methodology. The purpose of applying MapReduce to glowworm swarm optimization goes
further than merely utilizing hardware. The parallelization of the algorithm enables difficult multimodal
functions with high dimensionality to be evaluated, which is not possible using the sequential GSO
approach.

This paper presents a parallel Glowworm swarm optimization (MR-GSO) algorithm based on the
MapReduce framework making the following key contributions:

• The MapReduce concept is successfully applied to the GSO algorithm.

• The evaluation of large-scale multimodal functions with high dimensions is demonstrating the
scalability and speedup of the algorithm with good optimization quality.

• An overhead analysis is performed to find the MapReduce framework overhead percentage when
running the GSO algorithm.

The remainder of this paper is organized as follows: Section 2 presents the related work in the
area of parallel optimization algorithms. In Section 3, the GSO approach is introduced as well as our
proposed MR-GSO algorithm. Section 4 presents the experimental evaluation, and Section 5 presents our
conclusions.

Related Work
The parallelization of optimization algorithms has received much attention by reducing the run

time for solving large-scale problems (Venter and Sobieszczanski-Sobieski, 2005; Ismail, 2004). Parallel
algorithms make use of multiple processing nodes in order to achieve a speedup as compared to running
the sequential version of the algorithm on only one processor (Grama et al., 2003). Many parallel
algorithms have been proposed to address the challenges of implementing optimization algorithms.

Many of the existing algorithms in literature apply the Message Passing Interface (MPI)
methodology (Snir et al., 1995). In (Ismail, 2004), a parallel genetic algorithm was proposed using the

IGI	
 Global	
 Microsoft	
 Word	
 2007	
 Template	

Reference	
 templateInstructions.pdf	
 for	
 detailed	
 instructions	
 on	
 using	
 this	
 document.	

MPI library on a Beowulf Linux Cluster with the master slave paradigm. In (Venter and Sobieszczanski-
Sobieski, 2005), an MPI-based parallel PSO algorithm was introduced.

MapReduce (Dean and Ghemawat, 2004) is easier to understand, while MPI (Snir et al., 1995) is
somehow more complicated since it has many instructions. However, MPI can reuse parallel processes on
a finer granularity level. MapReduce communicates between the nodes by disk operations (the shared
data is stored in a distributed file system such as HDFS), which is faster than local file systems, while
MPI communicates using the message passing model. MapReduce provides fault-tolerance of node
failures, while MPI processes are terminated when a node fails.

In (McNabb et al., 2007), MRPSO incorporated the MapReduce model to parallelize PSO by
applying it on computationally data intensive tasks. The authors presented a radial basis function as the
benchmark for the evaluation of their MRPSO approach, and verified that MRPSO is a good approach for
optimizing data-intensive functions.

In (Jin et al., 2008), the authors made an extension of the genetic algorithm with the MapReduce
model, and successfully proved that the genetic algorithm can be easily parallelized with the MapReduce
methodology. In (Wu et al., 2012), the authors proposed a MapReduce-based ant colony approach. They
showed how ant colony optimization can be modeled with the MapReduce framework. They designed
and implemented their algorithm using Hadoop.

In (Wu et al., 2012), the authors introduced a new ACO algorithm using the MapReduce
methodology. They showed how ACO optimization can be modeled and enhanced when the MapReduce
framework is involved in the algorithm design. Their experiments were conducted with different types of
optimization problems such as the 0-1 knapsack problem and the TSP (Traveling Salesman Problem), and
showed the effectiveness of their MapReduce implementation.

In (Tan et al., 2012), the authors presented another ACO MapReduce based algorithm using the
Max-Min technique to show how MapReduce's capability reflects on the algorithm's scalability. The
results showed that their algorithm achieved better results compared to the traditional Max-Min ACO
version.

A MapReduce-based differential evolution approach was proposed in (Zhoun, 2010) to enhance
the algorithm's scalability. The algorithm divided the population into multiple partitions and after that
each partition was assigned to the task for updating the sub-population in each partition. The
computational time of the algorithm was reduced compared to the sequential version.

Most MapReduce implementations were used to optimize single objective functions, whereas in
our proposed algorithm, the algorithm searches for multiple maxima for difficult multimodal functions. In
(Aljarah and Ludwig, 2013b), we proposed MR-GSO and made preliminary experiments with multimodal
functions with low number of dimensions. In this paper, we expanded the experiments with higher
dimensional multimodal functions to prove that the MR-GSO is scalable and efficient. In addition, we
analyzed the efficiency of the MapReduce implementation by investigating the time spent in the map
phase and in the reduce phase in order to quantify the overhead produced by the Hadoop framework.

Proposed Approach

Introduction to Glowworm Swarm Optimization
Glowworm swarm optimization (GSO) is a swarm intelligence method first introduced by

Krishnanand and Ghose in 2005 (Krishnanand and Ghose, 2005). The swarm in the GSO algorithm is
composed of N individuals called glowworms. A glowworm i has a position Xi(t) at time t in the function
search space, a light emission which is called a luciferin level Li(t), and a local decision range rdi(t). The

IGI	
 Global	
 Microsoft	
 Word	
 2007	
 Template	

Reference	
 templateInstructions.pdf	
 for	
 detailed	
 instructions	
 on	
 using	
 this	
 document.	

luciferin level is associated with the objective value of the individual's position based on the objective
function J.

A glowworm that emits more light (high luciferin level) implies that it is closer to an actual better
position and has a high objective function value. A glowworm is attracted by other glowworms whose
luciferin level is higher than its own within the local decision range. If the glowworm finds some
neighbors with a higher luciferin level that are within its local range, the glowworm moves towards them.
At the end of the process, most glowworms will gather at the multiple peak locations in the search space.

The GSO algorithm consists of four main stages: glowworm initialization, luciferin level update,
glowworm movement, and glowworm local decision range update.

In the first stage, N glowworms are randomly deployed in the specific objective function search
space. In addition, in this stage the constants that are used for the optimization are initialized, and all
glowworms' luciferin levels are initialized with the same value (L0). Furthermore, local decision range rd
and radial sensor range rs are initialized with the same initial value (r0).

The luciferin level update is considered the most important step in the glowworm optimization
process since the objective function is evaluated at the current glowworm position (Xi). The luciferin level
for all swarm members are modified according to the objective function values. The process for the
luciferin level update is done with the following equation:

 𝐿! 𝑡 = 1 − 𝜌 𝐿! 𝑡 − 1 + 𝛾𝐽(𝑋!(𝑡) (1)

where Li(t) and Li(t-1) are the new luciferin level and the previous luciferin level for glowworm i,
respectively, ρ is the luciferin decay constant (ρ ϵ (0,1)), γ is the luciferin enhancement fraction, and
J(Xi(t)) represents the objective function value for glowworm i at current glowworm position (Xi) at
iteration t.

After that and throughout the movement stage, each glowworm i tries to extract the neighbor
group Ni(t) based on the luciferin levels and the local decision range (rd) using the following rule:

 𝑗 ∈ 𝑁! 𝑡 iff 𝑑!" < 𝑟𝑑! 𝑡 𝑎𝑛𝑑 𝐿! 𝑡 > 𝐿! 𝑡 (2)

where j is one of the glowworms close to glowworm i, Ni(t) is the neighbor group, dij is the
Euclidean distance between glowworm i and glowworm j, rdi(t) is the local decision range for glowworm
i, and Lj(t) and Li(t) are the luciferin levels for glowworm j and i, respectively.

After that, the actual selected neighbor is identified by two operations: the probability calculation
operation to figure out the movement direction toward the neighbor with the higher luciferin value. This
is done by applying the following equation:

 𝑃𝑟𝑜𝑏!" =
!! ! !!! !

!! ! !!! !!∈!!(!)
 (3)

where j is one of the neighbor group Ni(t) of glowworm i. The denominator in Equation (3) can
be zero if the glowworm i doesn’t have neighbors, and in this case the glowworm i preserves its location
without any change.

After the probability calculation, in the second operation, glowworm i selects a glowworm from
the neighbor group using the roulette wheel method whereby the higher probability glowworm has more
chance to be selected from the neighbor group.

IGI	
 Global	
 Microsoft	
 Word	
 2007	
 Template	

Reference	
 templateInstructions.pdf	
 for	
 detailed	
 instructions	
 on	
 using	
 this	
 document.	

Then, at the end of the glowworm movement stage, the position of the glowworm is modified based on
the selected neighbor position using the following equation:

 𝑋! 𝑡 = 𝑋! 𝑡 − 1 + 𝑠 !! ! !!! !
!!"

 (4)

where Xi(t) and Xi(t-1) are the new position and previous position for glowworm i, respectively, s
is a step size constant, and 𝛿!" is the Euclidean distance between glowworm i and glowworm j.

The last stage of GSO, is the local decision range update, where the local decision range rdi is
updated in order to add flexibility to the glowworm to formulate the neighbor group in the next iteration.
The following equation is used to update rdi in the next iteration:

 𝑟𝑑! 𝑡 = min {𝑟𝑠,max 0, 𝑟𝑑! 𝑡 − 1 + 𝛽 𝑛𝑡 − 𝑁! 𝑡 − 1 } (5)

where rdi(t) and rdi(t-1) are the new local decision range, and the previous local decision range
for glowworm i, respectively, rs is the constant radial sensor range, β is a model constant, nt is a constant
parameter used to control the neighbor count, and |Ni(t)| is the actual number of neighbors.

Proposed MapReduce GSO Algorithm (MR-GSO)
The grouping nature of GSO makes it an ideal candidate for parallelization. Based on the

sequential procedure of glowworm optimization discussed in the previous section, we can employ the
MapReduce model. MR-GSO consists of two main phases: Initialization phase, and MapReduce phase.

In the initialization phase, an initial glowworm swarm is created. For each glowworm i, a random
position vector (Xi) is generated using uniform randomization within the given search space. Then, the
objective function J is evaluated using the Xi vector. After that, the luciferin level (Li) is calculated by
Equation (1) using the initial luciferin level L0, J(Xi), and other given constants. The local decision range
rd is given an initial range r0. After the swarm is updated with this information, the glowworms are stored
in a file on the distributed file system as a <Key, Value> structure, where Key is unique glowworms ID i,
and Value is the glowworm information, which will be described below and shown in Figure 1.

Figure 1: Glowworm Representation Structure

As shown in Figure 1, the main glowworm components are delimited by semicolon, while the
position Xi vector component is delimited by comma, where m is the number of dimensions used. The
initial stored file is used as input for the first MapReduce job in the MapReduce phase.

IGI	
 Global	
 Microsoft	
 Word	
 2007	
 Template	

Reference	
 templateInstructions.pdf	
 for	
 detailed	
 instructions	
 on	
 using	
 this	
 document.	

In the second phase of MR-GSO, an iterative process of MapReduce jobs is performed where
each MapReduce job represents iteration in the GSO. The result of each MapReduce job is an updated
glowworm swarm with updated information, which is then used as the input for the next MapReduce job.

During each MapReduce job, the algorithm benefits from the power of the MapReduce model for
the time consuming stages of the luciferin level update and glowworm movement. In the movement stage,
each glowworm i extracts the neighbor group Ni(t) based on Equation (2), which requires distance
calculations and luciferin level comparisons between each glowworm and other swarm members to locate
the neighbor group. This process is executed N2 times, where N is the swarm size. The neighbor group
finding process is accomplished by the map function that is part of a MapReduce job.

Before the neighbor group finding process is done in the Map function, a copy of the stored
glowworm swarm (TempSwarm) is retrieved from the distributed file system, which is a feature provided
by the MapReduce framework for storing files. In addition, the other information such as the GSO
constants s, ρ, γ, β, nt, and rs that are used for the GSO movement equations, are retrieved from the job
configuration file.

After that, the neighbor group finding process is started when the Map function receives <Key,
Value> from the MapReduce job, where Key is the glowworm ID i and Value is the glowworm
information. However, the Map function processes the Value by breaking it into the main glowworm
components (Xi, J(Xi), Li, and rdi), which are used inside the Map function. Then, a local iterative search
is performed on TempSwarm to locate the neighbor group using Equation (2). After that, the neighbor
probability values are calculated based on Equation (3) to find the best neighbor using the roulette wheel
selection method. At the end of the Map operation, the Map function emits the glowworm ID i with its
Value and glowworm ID i with the selected neighbor position vector (Xj) to the Reduce function. The
Map function works as shown in Algorithm 1 outlining the pseudo code of the Map operation.

As an intermediate step in the MapReduce job, the emitted intermediate output from the mapper
function is partitioned using the default partitioner by assigning the glowworms to the reducers based on
their IDs using the modulus hash function.

The Reduce function in the MapReduce job is responsible for updating the luciferin level Li,
which is considered the most expensive step in the glowworm optimization, since in this stage the
objective function is evaluated for the new glowworm position. The luciferin level updating process is
started when the Reduce function receives < Key, ListofValues> from the Map function where Key is the
glowworm ID and ListofValues contains the glowworm value itself and its best neighbor position (Xj).
The reduce function extracts the neighbor position vector (Xj) and glowworm information (Xi, J(Xi), Li,
and rdi). Then, the updating of the glowworm position vector is done using Equation (4). After that, the
objective function is evaluated using the new glowworm position vector, and then the luciferin level is
updated using Equation (1). Also, rdi is updated using Equation (5). At the end, the Reduce function emits
the glowworm ID i with the newly updated glowworm information. The pseudo-code of the Reduce
function is shown in Algorithm 2.

At the end of the MapReduce job, the new glowworm swarm replaces the previous swarm in the
distributed file system, which is used by the next MapReduce job.

IGI	
 Global	
 Microsoft	
 Word	
 2007	
 Template	

Reference	
 templateInstructions.pdf	
 for	
 detailed	
 instructions	
 on	
 using	
 this	
 document.	

IGI	
 Global	
 Microsoft	
 Word	
 2007	
 Template	

Reference	
 templateInstructions.pdf	
 for	
 detailed	
 instructions	
 on	
 using	
 this	
 document.	

IGI	
 Global	
 Microsoft	
 Word	
 2007	
 Template	

Reference	
 templateInstructions.pdf	
 for	
 detailed	
 instructions	
 on	
 using	
 this	
 document.	

Experiments and Results
In this section, we describe the optimization quality and discuss the running time of the

measurements for our proposed algorithm. We focus on scalability in terms of speedup and also on the
optimization quality.

Environment
We ran the MR-GSO experiments on the Longhorn Hadoop cluster hosted by the Texas

Advanced Computing Center (TACC1), which is one of the common Hadoop clusters that is used by
researchers. The Longhorn Hadoop cluster contains 384 compute cores and 2.304 TB of aggregated
memory capacity. The Longhorn Hadoop cluster has 48 nodes containing 48GB of RAM, 8 Intel
Nehalem cores (2.5GHz each). For our experiments, we used Hadoop version 0.20 (new API) for the
MapReduce framework, and Java runtime 1.6 to implement the MR-GSO algorithm.

Benchmark Functions
To evaluate our MR-GSO algorithm, we used three multimodal benchmark functions. The

benchmark functions are the following (Engelbrecht et al., 2012, Qu et al., 2014):

• F1: The Equal-peaks-B function is a highly multimodal function in the m-dimensional search
space. All local maxima of the Equal-peaks-A function have equal function values. The function
search space (!

!
≤ 𝑋i≤

!
!
) is used, where 𝑋i is the m-dimensional vector and i = 1,...,m. The

Equal-peaks-B function has 2m peaks like the Rastrigin function. The function has the following
definition:

 𝐹! 𝑋! = [𝑠𝑖𝑛!(!
!!! 𝑋!)] (6)

• F2: The Rastrigin function is a highly multimodal function with the locations of the minima and
maxima regularly distributed. This function presents a fairly difficult problem due to its large
search space and its large number of local minima and maxima. We restricted the function to the
hypercube (−1 ≤ 𝑋i≤ 1); i = 1 ... m. The function has 2m peaks such as for m=2 dimensions, the
function has 4 peaks within the given range. The function has the following definition:

 𝐹! 𝑋! = 10𝑚 + [𝑋!! − 10cos (2π!
!!! 𝑋!)] (7)

• F3: The Composition function is a very difficult multimodal function, which is constructed based
on eight basic functions in the m-dimensional search space and contains different functions’
properties. The functions that are used to form this benchmark are Rastrigin, EF8F2, Weierstrass,
and Griewank. Two versions from each basic function are used to construct the composition
function, the original and rotated versions. We restricted the function to the hypercube (−5 ≤
𝑋i≤ 5); i = 1 ... m. The function has 8 peaks within the given range. For more details regarding
this function, refer to (Engelbrecht et al., 2012).

Evaluation Measures
In our experiments, we used the parallel Speedup (Grama, 2003) measure to evaluate the

performance of our MR-GSO algorithm, which is calculated using the following equation:
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

1	
 https://portal.longhorn.tacc.utexas.edu/	

IGI	
 Global	
 Microsoft	
 Word	
 2007	
 Template	

Reference	
 templateInstructions.pdf	
 for	
 detailed	
 instructions	
 on	
 using	
 this	
 document.	

 Speedup= !!
!!

 (8)

where T2 is the running time using 2 nodes, and Tn is the running time using n nodes, where n is a
multiple of 2.

The speedup is obtained by fixing the swarm size while increasing the number of cluster nodes to
evaluate the algorithm's ability to scale with increasing numbers of cluster nodes.

For the optimization quality, we use the Peaks Capture Rate (PCR) and the average minimum
distance to the peak locations (Davg) (Krishnanand and Ghose, 2009b). A peak is considered captured if
there are three glowworms near it with distance less than or equal ϵ. In this paper, we used the distance ϵ
= 0.05 as recommended in (Krishnanand and Ghose, 2009b).

PCR is given by the following equation:

 PCR= !"#$%& !" !"#$%$!"#$%&'(
!"#$%& !" !"" !"#$%

×100% (9)

	

The average minimum distance to the peak locations Davg is given by the following

equation:

 𝐷!"# =
!
!
× min{!!!!!}{𝑑!!… 𝑑!"}!

!!! (10)

where 𝛿!" is the Euclidean distance between the location of glowworm Xi and Sj; Xi and Sj are the
locations of glowworm i and peak j, respectively, and Q is the number of available peak locations; N is
the number of glowworms in the swarm.

The best result will be achieved with high PCR and low Davg values. For example, if we obtain a
low Davg and a low PCR, this means that the glowworms gathered only on a few peaks and did not capture
other peaks. A high PCR, close to 100%, means that MR-GSO captured most of the peaks, whereas a low
Davg, close to zero, implies that all glowworms are close to the peaks, and thus, this ensures a gathering of
the glowworms at the peak locations.

We used the GSO settings that are recommended in (Krishnanand and Ghose, 2009b). We used
the luciferin decay constant ρ=0.4; the luciferin enhancement constant γ=0.6; the constant parameter
β=0.08; the parameter used to control the number of neighbors nt=5; the initial luciferin rate L0=5.0; the
step size s=0.03. In addition, the local decision range rd and the radial sensor range rs are problem-based
values. In our experiments, the local decision range rd is kept constant (rs=rd=r0) throughout the
optimization process. Preliminary experiments were done to decide whether to use an adaptive or constant
rd. The constant rd achieved better results, since it ensures that the glowworm moves even if it has many
neighbors. If there are many neighbors around, then the glowworm keeps moving towards the peaks,
unlike the adaptive rd, where if the glowworm has many neighbors, it does not move and therefore, the
new rd is 0 based on Equation (5). The best r0 values for the given benchmark functions are chosen based
on preliminary experiments. For the PCR and Davg measurements, the average of 25 independent runs was
calculated.

IGI	
 Global	
 Microsoft	
 Word	
 2007	
 Template	

Reference	
 templateInstructions.pdf	
 for	
 detailed	
 instructions	
 on	
 using	
 this	
 document.	

Results
To evaluate the MR-GSO algorithm, the experiments are done measuring PCR, Davg, running

time, and speedup for the mentioned benchmarks. In addition, the MapReduce overhead is also
investigated. We will investigate the measures applied to all three benchmark functions. Figures 2 to 8
show the results for benchmark function F1, Figures 9-15 show the results for benchmark function F2,
and Figures 16 to 19 show the results for benchmark function F3.

Figure 2 shows the optimization quality results for the F1 function with 2 dimensions. The PCR
and Davg for every iteration using different numbers of swarm sizes (starting from 10,000 to 60,000) are
presented. As can be noted from Figure 2(a), the PCR is improving for increasing swarm sizes. In
addition, the number of iterations needed to capture all peaks is reduced, such as, the PCR converges to
100% with a swarm size of 10,000 at iteration 2, while with a swarm size of 60,000 the PCR converges at
iteration 1. Also, Figure 2(b) shows that the average minimum distance is improved (reduced) when the
swarm size is increased maintaining low values for all swarm sizes.

Figure 2: Optimization process for Equal-peaks-B function (F1) using 2 dimensions with 200
iterations, and r0=2.0. 2(a) Peaks capture rate. 2(b) Average minimum distance.

The optimization quality results for the F1 function with 3 dimensions are shown in Figure 3.
Figure 3(a) clarifies the impact of the swarm size on the PCR. However, 19 iterations are needed to
capture 100% of the peaks with a swarm size of 10,000, while with a swarm size of 60,000 the PCR
converges to 100% at iteration 13. Also, Figure 3(b) shows that larger swarm sizes give better average
minimum distance results maintaining low values for all swarm sizes.
	

IGI	
 Global	
 Microsoft	
 Word	
 2007	
 Template	

Reference	
 templateInstructions.pdf	
 for	
 detailed	
 instructions	
 on	
 using	
 this	
 document.	

Figure 3: Optimization process for Equal-peaks-B function (F1) using 3 dimensions with 200
iterations, and r0=2.0. 3(a) Peaks capture rate. 3(b) Average minimum distance.

Figure 4 shows the results for peaks capture rate and the average minimum distance for the F1
function with 4 dimensions. We note that 37 iterations capture 100% of the peaks with a swarm size of
10,000, while with a swarm size of 60,000 the PCR converges to 100% at iteration 27. Furthermore, the
average minimum distance results maintain low values for all swarm sizes.

Figure 4: Optimization process for Equal-peaks-B function (F1) using 4 dimensions with 200
iterations, and r0=2.0. 4(a) Peaks capture rate. 4(b) Average minimum distance.

IGI	
 Global	
 Microsoft	
 Word	
 2007	
 Template	

Reference	
 templateInstructions.pdf	
 for	
 detailed	
 instructions	
 on	
 using	
 this	
 document.	

The PCR results for the F1 function with 5 dimensions are shown in Figure 5. MR-GSO needs 86
iterations to capture 100% of the peaks with 10,000 glowworms, but with 60,000, the PCR achieved
100% peaks capture rate at iteration 46. In addition, the average minimum distance results in Figure 5(b)
show the best results with 60,000 glowworms.

Figure 5: Optimization process for Equal-peaks-B function (F1) using 5 dimensions with 200
iterations, and r0=2.0. 5(a) Peaks capture rate. 5(b) Average minimum distance.

The optimization quality results for the F1 function with 6, 7 and 8 dimensions are shown in
Figures 6 to 8, respectively. All curves demonstrate the impact of the swarm size on the PCR, especially
with increasing dimensions. In Figure 6(b), the peak capture rate results for 6 dimensions show that 200
iterations are needed to capture 93.75% of the peaks with a swarm size of 10,000, while 81 iterations with
60,000 glowworms are needed to capture 100%. Furthermore, using 7 dimensions, 200 iterations capture
22.66% of the peaks with a swarm size of 10,000, while with a swarm size of 60,000 the PCR converges
to 100% at iteration 140 as shown in Figure 7. In Figure 8, the results with 8 dimensions are given. The
results show that 200 iterations capture 2.73% of the peaks with a swarm size of 10,000, while with a
swarm size of 60,000 the PCR converges to 64.84% at iteration 200.

Figure 6: Optimization process for Equal-peaks-B function (F1) using 6 dimensions with 200
iterations, and r0=2.0. 6(a) Peaks capture rate. 6(b) Average minimum distance.

IGI	
 Global	
 Microsoft	
 Word	
 2007	
 Template	

Reference	
 templateInstructions.pdf	
 for	
 detailed	
 instructions	
 on	
 using	
 this	
 document.	

Figure 7: Optimization process for Equal-peaks-B function (F1) using 7 dimensions with 200
iterations, and r0=2.0. 7(a) Peaks capture rate. 7(b) Average minimum distance.

Figure 8: Optimization process for Equal-peaks-B function (F1) using 8 dimensions with 200
iterations, and r0=2.0. 8(a) Peaks capture rate. 8(b) Average minimum distance.

IGI	
 Global	
 Microsoft	
 Word	
 2007	
 Template	

Reference	
 templateInstructions.pdf	
 for	
 detailed	
 instructions	
 on	
 using	
 this	
 document.	

Figure 9 to 15 show the optimization quality results for the F2 function with 2, 3, 4, 5, 6, 7 and 8
dimensions, respectively. Figure 9(a) shows that 1 iteration captures 100% of the peaks for 2 dimensions
for all swarm sizes. The PCR results with 3 dimensions in Figure 10(a) show that 3 iterations capture
100% of the peaks with a swarm size of 10,000, while with a larger swarm size (60,000), the PCR
converges to 100% at iteration 1. Furthermore, in Figure 11(a), 10 iterations capture 100% of the peaks
with 10,000 glowworms, while PCR converges to 100% at iteration 6 with 60,000 glowworms. However,
23 iterations capture 100% of the peaks with 10,000 glowworms with 5 dimensions, while with a swarm
size of 60,000 the PCR converges to 100% at iteration 14 with the same dimension. Lastly, the PCR
results using 10,000 with 6,7, and 8 dimensions show that 200 iterations capture 98.44%, 16.41%, and
0.0% of the peaks, respectively. The PCR results using 60,000 with 6, and 7 dimensions show that 200
iterations capture 100.00%, while with 8 dimensions, PCR converges to 60.94%.

Figure 9: Optimization process for Rastrigin function (F2) using 2 dimensions with 200 iterations,
and r0=0.5. 9(a) Peaks capture rate. 9(b) Average minimum distance.

Figure 10: Optimization process for Rastrigin function (F2) using 3 dimensions with 200 iterations,
and r0=0.5. 10(a) Peaks capture rate. 10(b) Average minimum distance.

IGI	
 Global	
 Microsoft	
 Word	
 2007	
 Template	

Reference	
 templateInstructions.pdf	
 for	
 detailed	
 instructions	
 on	
 using	
 this	
 document.	

Figure 11: Optimization process for Rastrigin function (F2) using 4 dimensions with 200 iterations,
and r0=0.5. 11(a) Peaks capture rate. 11(b) Average minimum distance.

Figure 12: Optimization process for Rastrigin function (F2) using 5 dimensions with 200 iterations,
and r0=0.5. 12(a) Peaks capture rate. 12(b) Average minimum distance.
	

IGI	
 Global	
 Microsoft	
 Word	
 2007	
 Template	

Reference	
 templateInstructions.pdf	
 for	
 detailed	
 instructions	
 on	
 using	
 this	
 document.	

Figure 13: Optimization process for Rastrigin function (F2) using 6 dimensions with 200 iterations,
and r0=0.5. 13(a) Peaks capture rate. 13(b) Average minimum distance.

Figure 14: Optimization process for Rastrigin function (F2) using 7 dimensions with 200 iterations,
and r0=0.5. 14(a) Peaks capture rate. 14(b) Average minimum distance.
	

IGI	
 Global	
 Microsoft	
 Word	
 2007	
 Template	

Reference	
 templateInstructions.pdf	
 for	
 detailed	
 instructions	
 on	
 using	
 this	
 document.	

Figure 15: Optimization process for Rastrigin function (F2) using 8 dimensions with 200 iterations,
and r0=0.5. 15(a) Peaks capture rate. 15(b) Average minimum distance.

Figures 16 to 19 show the optimization quality results for the F3 function with 2, 3, 4, and 5
dimensions, respectively. Figure 16(a) shows that 20 iterations capture 100% of the peaks with a swarm
size of 10,000, while with a larger swarm size (60,000) the PCR converges to 100% at iteration 1 already.
The PCR results for 3 dimensions in Figure 17(a) show that 200 iterations capture 50% of the peaks with
a swarm size of 10,000, while with a larger swarm size (60,000) the PCR converges to 87.5% at iteration
200. Lastly, the PCR results using 10,000 with 4 and 5 dimensions show that 200 iterations capture 0% of
the peaks. On the other hand, the PCR results using 60,000 with 4 dimensions show that 200 iterations
capture 62.5%, while with 5 dimensions PCR converges to 37.5%.

	

Figure 16: Optimization process for Composition function (F3) using 2 dimensions with 200
iterations, and r0=0.6. 16(a) Peaks capture rate. 16(b) Average minimum distance.

IGI	
 Global	
 Microsoft	
 Word	
 2007	
 Template	

Reference	
 templateInstructions.pdf	
 for	
 detailed	
 instructions	
 on	
 using	
 this	
 document.	

	

Figure 18: Optimization process for Composition function (F3) using 4 dimensions with 200
iterations, and r0=3.0. 18(a) Peaks capture rate. 18(b) Average minimum distance.

Figure 17: Optimization process for Composition function (F3) using 3 dimensions with 200
iterations, and r0=0.9. 17(a) Peaks capture rate. 17(b) Average minimum distance.

IGI	
 Global	
 Microsoft	
 Word	
 2007	
 Template	

Reference	
 templateInstructions.pdf	
 for	
 detailed	
 instructions	
 on	
 using	
 this	
 document.	

We ran MR-GSO with a maximum of 32 cluster nodes by increasing the number of nodes in each
run starting at 2. In each run, we report the running time and speedup (average of 25 iterations) of MR-
GSO. The running time and speedup results for the Equal-peaks-B function (F1) with 8 dimensions are
shown in Figure 20. Figures 20(a), 20(c), and 20(e) show the running times for the 3 swarm sizes of
100,000, 200,000, and 300,000 glowworms, respectively. The number of glowworms is equally
distributed among the computational nodes used. As can be seen by all figures, the running time reduces
faster at the beginning than at the end when increasing the number of nodes. Furthermore, the impact of
the swarm size on the running time is well observed. Running the algorithm on 2 nodes takes 505.02,
1978.98, and 4388.89 seconds for 100,000, 200,000, and 300,000 glowworms, respectively.

In Figures 20(b), 20(d), and 20(f), the speedup results using different swam sizes with different
numbers of nodes are shown, highlighting the scalability of the algorithm. As can be derived from the
figures, the speedup for N=100,000 was very close to the linear speedup (optimal scaling) using 4, and 8
nodes. The same behavior is observed for N=200,000 and N=300,000. For N=200,000, the speedup is
very close to the linear one using 2, 8, and 16 nodes, but it diverges from the optimal line with a smaller
difference compared to N=100,000. For N=300,000, the speedup is close to the linear one with 16 nodes,
then it starts to drift away for 32 nodes, but comparing this difference with the one using N=200,000 and
N=100,000 is much smaller. In addition, the improvement factor of MR-GSO's running times for the
swarm sizes of N=100,000, N=200,000 and N=300,000 are 5.23, 10.55, 12.54 respectively, compared to
the running time using 2 nodes.

Figure 19: Optimization process for Composition function (F3) using 5 dimensions with 200
iterations, and r0=5.0. 19(a) Peaks capture rate. 19(b) Average minimum distance.

IGI	
 Global	
 Microsoft	
 Word	
 2007	
 Template	

Reference	
 templateInstructions.pdf	
 for	
 detailed	
 instructions	
 on	
 using	
 this	
 document.	

Figure 21 shows the running time and speedup results for the Rastrigin function (F2) with 8
dimensions. Figure 21(a) shows the running for the swarm size of 100,000. As more number of nodes are
available (more hardware resources), the running time decreases. The same trend happens with 200,000,
and 300,000 in the Figures 21(c), and 21(e), respectively. Running the algorithm on 2 nodes takes 505.39,
1967.18, and 4399.39 seconds for 100,000, 200,000, and 300,000 glowworms, respectively.

Figures 21(b), 21(d), and 21(f) show the algorithm speedup curve for the Rastrigin function (F2)
and how an algorithm scales with respect to the linear speedup. The speedup values obtained with a
swarm size of 100,000 with our proposed algorithm are almost linear up to 8 nodes such as the speedup is
3.7 for 4 nodes, 6.5 for 8 nodes, 10.2 for 16 nodes, and 12.9 for 32 nodes. For 200,000 glowworms, as
shown in Figure 17(d), the speedup is close to the linear such as the speedup is 3.9 for 4 nodes, 7.3 for 8
nodes, 14.0 for 14 nodes, and 21.9 for 32, which are better speedup values compared to the swarm size of
100,000. For 300,000 glowworms as shown in Figure 21(f), the proposed algorithm achieves an almost
linear speedup with 3.9 for 4 nodes, 7.7 for 8 nodes, 14.5 for 14 nodes, and 24.5 for 32, which are better
speedup results compared to the swarm sizes of 100,000, and 200,000.

	

IGI	
 Global	
 Microsoft	
 Word	
 2007	
 Template	

Reference	
 templateInstructions.pdf	
 for	
 detailed	
 instructions	
 on	
 using	
 this	
 document.	

(a) Running Time with N=100,000 (b) Speedup with N=100,000

(c) Running Time with N=200,000 (d) Speedup with N=200,000

(e) Running Time with N=300,000 (f) Speedup with N=300,000

Figure 20: Running time and speedup results for Equal-peaks-B function (F1) with 8 dimensions.
20(b), 20(d) and 20(f): Running time with N=100,000, N=200,000 and N=300,000, respectively.
20(a), 20(c) and 20(e): Speedup with N=100,000, N=200,000 and N=300,000, respectively.

IGI	
 Global	
 Microsoft	
 Word	
 2007	
 Template	

Reference	
 templateInstructions.pdf	
 for	
 detailed	
 instructions	
 on	
 using	
 this	
 document.	

(a) Running Time with N=100,000 (b) Speedup with N=100,000

(c) Running Time with N=200,000 (d) Speedup with N=200,000

(e) Running Time with N=300,000 (f) Speedup with N=300,000

Figure 21: Running time and speedup results for Rastrigin function (F2) with 8 dimensions.
21(a), 21(c) and 21(e): Running time with N=100,000, N=200,000 and N=300,000,
respectively. 21(b), 21(d) and 21(f): Speedup with N=100,000, N=200,000 and N=300,000,
respectively.

IGI	
 Global	
 Microsoft	
 Word	
 2007	
 Template	

Reference	
 templateInstructions.pdf	
 for	
 detailed	
 instructions	
 on	
 using	
 this	
 document.	

As we noted from the speedup figures, the system speedup diverges from the linear
speedup when larger number of nodes are used. This happens because of the overhead of the
Hadoop framework. The Hadoop framework introduces overhead due to the management of
starting MapReduce jobs, starting mappers/reducers operations, serializing/deserializing
intermediate outputs, sorting, and storing the outputs to the distributed file system. The impact of
the MapReduce overhead percentages for the Rastrigin function (F2) with 8 dimensions and
using different swarm sizes with different numbers of nodes are presented in Figure 22. The red
portion in each column represents the overhead running time and blue portion represents the
actual time for the function computations. In addition, the overhead percentage is given on top of
each column. Figure 22(a) shows the overhead percentages using 32 nodes. We note that as the
swarm size increases from 100,000 to 300,000, the overhead percentage reduces such as the
overhead percentage for 100,000 is 55.04%, while the overhead percentage for 300,000 is
21.81% (less than half). The same trend is shown in Figures 22(b) to 22(e) using 10, 8, 4, and 2
nodes, respectively. Therefore, we can conclude that each additional node at some point
contributes to increasing the overhead. Some of the Hadoop overhead is unavoidable and we
should find the optimal number of nodes for each experiment, which balances the overhead and
the algorithm performance. Furthermore, the overhead of the Hadoop framework can be avoided
when using larger numbers of swarm sizes, and thus the speedup is closer to the optimal one.

IGI	
 Global	
 Microsoft	
 Word	
 2007	
 Template	

Reference	
 templateInstructions.pdf	
 for	
 detailed	
 instructions	
 on	
 using	
 this	
 document.	

Figure 22: Overhead percentages for the Rastrigin function (F2) with 8 dimensions using different
swarm sizes. 22(a): Overhead percentage using 32 nodes. 22(b): Overhead percentage using 16
nodes. 22(c): Overhead percentage using 8 nodes. 22(d): Overhead percentage using 4 nodes. 22(e):
The Overhead percentage using 2 nodes.

(a) Overhead percentage with 32 nodes (b) Overhead percentage with 16 nodes

(c) Overhead percentage with 8 nodes (d) Overhead percentage with 4 nodes

 (e) Overhead percentage with 2 nodes

IGI	
 Global	
 Microsoft	
 Word	
 2007	
 Template	

Reference	
 templateInstructions.pdf	
 for	
 detailed	
 instructions	
 on	
 using	
 this	
 document.	

Conclusion
This paper introduced a MapReduce-enabled Glowworm Swarm Optimization (MR-GSO)

algorithm for multimodal function optimization. GSO is particular useful for multimodal function
optimization since it searches for multiple optima. MR-GSO parallelizes the GSO approach by
implementing the map and reduce functions. The map function is responsible for the neighborhood
calculations whereas the reduce function performs the luciferin level and the glowworm movement
update. Two multimodal benchmark problems were evaluated for 2 to 8 dimensions in increments of 1.
The first part of the evaluation captured the peak capture rate and the minimum distance for the different
dimensions using different swarm sizes (10,000 and 60,000 in increments of 10,000). The measurements
showed that with increasing dimensionality and difficulty of the benchmark problem larger swarm sizes
are needed in order for the algorithm to find all peaks. The second part of the evaluation measured the
running time and speedup of the MR-GSO algorithm. The number of computational nodes was scaled
from 2 to 32 with double increments. The results showed that for both benchmark functions with the
highest number of glowworms, the speedup was close to the linear speedup showing a good utilization of
the parallel implementation of MR-GSO. In addition, the overhead of the Hadoop infrastructure was
investigated showing an increase for larger numbers of glowworms used. In addition, the overhead more
drastically increased for increasing number of computational nodes used. For example, using 32
computational nodes the overhead for 300,000 glowworms is 21.81%. Our future plan is to investigate the
impact of the GSO settings on the optimization quality such as rs setting, and step size. Furthermore, we
will apply the proposed algorithm on real world applications.

References
Aljarah, I. & Ludwig, S. A. (2013a). A new clustering approach based on glowworm swarm
optimization. In: IEEE Congress on Evolutionary Computation, IEEE, pp. 2642-2649.

Aljarah, I. &. Ludwig, S. A. (2013b). A mapreduce based glowworm swarm optimization approach for
multimodal functions, in: Swarm Intelligence (SIS), IEEE Symposium on, pp. 22-31.

Barrera, J. & Coello, C. (2009). A review of particle swarm optimization methods used for multimodal
optimization, in: C. Lim, L. Jain, S. Dehuri (Eds.), Innovations in Swarm Intelligence, volume 248 of
Studies in Computational Intelligence, Springer Berlin Heidelberg, pp. 9-37.

Dean, J. & Ghemawat, S. (2008) Mapreduce: Simplified data processing on large clusters, ACM, pp.
107-113. vol 51.

DISCO. (2011). Disco mapreduce framework [Online]. Available: http://discoproject.org.

Engelbrecht, A. (2007). Computational Intelligence: An Introduction 2nd Edition, Wiley.

FACEBOOK. (2011). Hadoop - facebook engg, note. [Online]. Available:
http://www.facebook.com/note.php?note id=16121578919.

Grama, A. & Gupta, A. & Karypis, G. & Kumar, V. (2003). Introduction to Parallel Computing,
Addison-Wesley, USA.

Gunarathne, T. & Wu, T. & Qiu, J. & Fox, G. (2010). Cloud computing paradigms for pleasingly parallel
biomedical applications, in: Proceedings of 19th ACM International Symposium on High Performance
Distributed Computing, ACM, pp. 460-469.

Ismail, M. (2004). Parallel genetic algorithms (PGAs): master slave paradigm approach using MPI, in: E-
Tech, pp. 83 - 87.

IGI	
 Global	
 Microsoft	
 Word	
 2007	
 Template	

Reference	
 templateInstructions.pdf	
 for	
 detailed	
 instructions	
 on	
 using	
 this	
 document.	

Jin, C. & Vecchiola, C. & Buyya, R. (2008). MRPGA: an extension of mapreduce for parallelizing
genetic algorithms, in: Proceedings of the 2008 Fourth IEEE International Conference on eScience,
ESCIENCE '08, IEEE Computer Society, Washington, DC, USA, pp. 214-221.

Kennedy, J. & Eberhart, R. (1995). Particle swarm optimization, in: IEEE International Conference on
Neural Networks, volume 4, IEEE, pp. 1942-1948 vol.4.

Krishnanand. K. N., & Ghose, D. (2005). Detection of multiple source locations using a glowworm
metaphor with applications to collective robotics, in: IEEE Swarm Intelligence Symposium, Pasadena,
CA, USA, pp. 84 - 91.

Krishnanand, K. N., & Ghose, D. (2008). Glowworm swarm optimization algorithm for hazard sensing
in ubiquitous environments using heterogeneous agent swarms, Soft Computing Applications in Industry,
pp.165-187.

Krishnanand, K. N. & Ghose, D. (2009a). Glowworm swarm optimization: a new method for optimizing
multi-modal functions, International Journal of Computational Intelligence Studies 1 (2009) 93-119.

Krishnanand, K. N. & Ghose, D. (2009b). Glowworm swarm optimization for simultaneous capture of
multiple local optima of multimodal functions, Swarm Intelligence 3. 87-124.

Krishnan, S. & Baru, C. & Crosby, C. (2010). Evaluation of mapreduce for gridding LIDAR data, in:
Proceedings of the CLOUDCOM '10, IEEE Computer Society, Washington, DC, USA, pp. 33-40.

Li, X., Engelbrecht, A., Epitropakis, M. G. (2013). Benchmark Functions for CEC'2013 Special Session
and Competition on Niching Methods for Multimodal Function Optimization, Evolutionary Computation
and Machine Learning Group, RMIT University, Melbourne, Australia.

MAPREDUCE. (2011). Apache software foundation, hadoop mapreduce [Online]. Available:
http://hadoop.apache.org/mapreduce.

McNabb, A. & Monson, C. & Seppi, K. (2007). Parallel PSO using mapreduce, in: IEEE Congress on
Evolutionary Computation, pp. 7-14.

Qu, B. Y., Liang, J. J., Suganthan P. N., and Chen Q. (2014). Problem definitions and evaluation criteria
for the CEC 2015 competition on single objective multi-niche optimization, Computational Intelligence
Laboratory, Zhengzhou University, Zhengzhou, China, Tech. Rep.

Stuetzle T. (2009). Ant colony optimization, in: Evolutionary Multi-Criterion Optimization, volume 5467
of Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2009, pp. 2-2.

Snir, M. & Otto, S. & Huss-Lederman, S. & Walker, D. & Dongarra, J. (1995). MPI: The Complete
Reference, MIT Press Cambridge, MA, USA. Tan, Q. & He, Q. & Shi, Z. (2012). Parallel Max-Min Ant
System Using MapReduce. in: Proceedings of the ICSI Conference. pp. 182-189.

Venter, G. & Sobieszczanski-Sobieski, J. (2005). A parallel particle swarm optimization algorithm
accelerated by asynchronous evaluations, Journal of Aerospace Computing, Information, and
Communication.

Wong, L. P., & Low, M., & Chong, C. S. (2008). A bee colony optimization algorithm for traveling
salesman problem, in: Proceedings of the 2008 Second Asia International Conference on Modelling &
Simulation (AMS), AMS '08, IEEE Computer Society, Washington, DC, USA, pp. 818-823.

Wu, B. & Wu, G. & Yang, M. (2012). A mapreduce based ant colony optimization approach to
combinatorial optimization problems, in: Natural Computation (ICNC), 2012 Eighth International
Conference on, pp. 728 - 732.

YAHOO. (2011). Yahoo inc. hadoop at yahoo!! [Online]. Available: http://developer.yahoo.com/hadoop.

IGI	
 Global	
 Microsoft	
 Word	
 2007	
 Template	

Reference	
 templateInstructions.pdf	
 for	
 detailed	
 instructions	
 on	
 using	
 this	
 document.	

Zhou, C. (2010). Fast parallelization of differential evolution algorithm using mapreduce, in: Proceedings
of the 12th Annual Conference on Genetic and Evolutionary Computation, GECCO'10, ACM, New York,
NY, USA, pp. 1113-1114.

