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Abstract—The availability of large volumes of Semantic Web data has created the potential of discovering vast amounts of

knowledge. Semantic relation discovery is a fundamental technology in analytical domains, such as business intelligence and

homeland security. Because of the decentralized and distributed nature of Semantic Web development, semantic data tend to be

created and stored independently in different organizations. Under such circumstances, discovering semantic relations faces

numerous challenges, such as isolation, scalability, and heterogeneity. This paper proposes an effective strategy to discover semantic

relationships over large-scale distributed networks based on a novel hierarchical knowledge abstraction and an efficient discovery

protocol. The approach will effectively facilitate the realization of the full potential of harnessing the collective power and utilization of

the knowledge scattered over the Internet.

Index Terms—Distributed systems, distributed discovery, Semantic Web, semantic relation

Ç

1 INTRODUCTION

WITH the development of Semantic Web technologies,
more and more Semantic Web data are generated,

which is being used in web applications and enterprise
information systems. To effectively utilize the large amount
of semantic data, efficient search mechanisms customized for
Semantic Web data, especially for ontologies, have been
proposed for both humans and software agents. For instance,
the semantic search [11] scans objects to capture instances in
a given data set. By utilizing keywords, the Swoogle search
engine [10] retrieves semantic entities as uniform resource
identifiers (URI). To support complex queries over resource
description framework (RDF) bases, query languages, such
as SPARQL [58], have been used to express various
restrictions on semantic entities and relationships. The
technologies listed above effectively assist users (human
and software agents) to locate desirable information from
large amount of semantic data on the web. However, hidden
knowledge of great potential value in large semantic data
sets may not be discovered by the aforementioned ap-
proaches. For instance, one such type of knowledge is to
determine the complex relationships between multiple
semantic entities, i.e., “how resources X and Y are related.”

Automatic discovery of semantic relationships between
entities is a key issue in analytical domains, such as
business intelligence, and homeland security, where “...the
focus is on trying to uncover obscured relationships or
associations between entities and very limited information
about the existence and nature of any such relationship is
known to the user...” [1]. In literature, we find many
applications that are built on the aforementioned types of
association. For example, detecting conflict of interest (COI)
relationships among potential reviewers and authors of
scientific papers [33] and detecting a connection between
two suspected passengers on the same flight in the context
of aviation safety [34].

Most of the prior work (e.g., [1], [33], and [34]) on
semantic association query and discovery assumed that
there is a global data set, where all of the entities and
relationships are available for analysis. Because Semantic
Web data are created and stored by different organizations
or individuals that are geographically distributed, such an
assumption is impractical. Moreover, moving and merging
these data sources to a central location require transmittal of
terabytes of data sets over long distances. Furthermore,
some repositories may not be allowed to be merged either
for legal reasons, for the risk of revealing business secrets,
or for posing other social challenges. On the other hand,
analyzing a local knowledge base can only obtain limited
knowledge that is constricted by spatial and temporal
constraints. Therefore, there is an increasing demand and
interest to collectively discover knowledge from distributed
sources. In light of the aforementioned discussion, new
challenges (that we outline below) have emerged:

. Because of the lack of a global view or unified
understanding of the distributed semantic data, it is
difficult to achieve global optimum of semantic
association discovery with dispersed local operations.

. The relationships between two entities may span
over multiple distributed knowledge bases, which
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requires efficient discovery protocols to forward
search requests between knowledge bases and later
to gather the search results.

. Because of the complexity of semantic-relation
queries, it may be difficult to achieve scalability
and low latency when considering large-scale dis-
tributed systems.

To the best of our knowledge, there is only one
previously reported work [15] on discovering semantic
relationships in distributed environments. That work
presents a superpeer-based approach to discover semantic
relations in a peer-to-peer (P2P) network environment. In
the proposed system, peers register with superpeers that
are also peers but likely to be more powerful in terms of
computing capacity, memory storage, and bandwidth.
Superpeers are connected with each other through semantic
links. The system is built on the assumption that each
superpeer knows how to reach other superpeers. Therefore,
relational discovery can be performed by finding semantic
paths at the superpeer layer. However, it was unspecified:
1) How do the related nodes can locate the same superpeer?
2) How do superpeers communicate in the network? As a
consequence, it is difficult to guarantee the scalability of the
system without the design of aforementioned communica-
tion components.

In this paper, we focus on a discovery system that breaks
the traditional barriers of the centralized scheme into the
realm of decentralized and distributed strategies. Our work
aims to support the discovery of semantic relationships
over geographically distributed knowledge bases on an
unprecedented scale. The proposed approach is fully
decentralized and scalable. Moreover, it not only efficiently
solves the semantic relation discovery problem, but also
improves the traditional search and discovery of semantic
knowledge. Therefore, our proposed methodology also
improves the effectiveness and efficiency of semantic
sharing, in general.

The rest of the paper is organized as follows: In the
following section, we detail the background knowledge.
Section 3 provides an overview of the discovery system
framework and presents some preliminary techniques.
Section 4 describes the design of the discovery system. In
Section 5, we evaluate the proposed methods and show
their effectiveness with a comprehensive set of simulations.
Related work and concluding remarks are provided in
Sections 6 and 7, respectively.

2 BACKGROUND

The RDF is a World Wide Web Consortium (W3C)
recommendation for describing web resources. The RDF
provides a basic data model, such as the entity-relationship
model for writing simple statements about web objects. The
RDF can make statements about resources in the form of
subject-predicate-object expressions, termed triples in the RDF
terminology. The subject denotes the resource that has a
URI. The predicate denotes traits or aspects of the resource
and expresses a relationship between the subject and object.
Predicates in the RDF also are identified by URIs. The object
is the actual value that can either be a resource or a literal.

The RDF also can represent simple statements about
resources as a directed labeled graph with typed edges
and nodes. In this model, a directed edge labeled with a
property name connects the subject to the object. For
instance, the group of statements, “There is a person
identified by http://someURI/contact#Jen. She is a friend of
another person, called Ben, and she teaches a course CS724
that is taken by a student, called Tim,” could be represented
as the RDF graph that is depicted in Fig. 1.

As depicted in Fig. 1, paths of the RDF graph represent
semantic relationships among the participating resources
(entities), explicitly or implicitly. The work reported in [1]
proposed a �-path query as a way of expressing semantic
associations between entities in the RDF graph. A path � ¼
e1; p1; e2; p2; e3; . . . ; en�1;

pn�1; en is a sequence of RDF state-
ments, where each triple ei; pi, and eiþ1 represents a single
statement in which pi is the predicate and one of ei or eiþ1 is
the subject and the other is the object. As opposed to the
idea reported in [1] in which a �-path is defined as a
directed path, in this paper, we treat paths as undirected
routes for the following reasons: 1) As pointed out in the
work reported in [49], it is difficult to generally determine
which relationships are of relevance in a certain situation
and which ones are irrelevant. Each relationship may be
deemed valuable in a certain situation and useless in
another situation. Therefore, our discovery mechanism aims
to find as many relationships as possible. The filtering of the
search results needs to consider the context and preferences
of the user or an application, which is beyond the scope of
this paper. Therefore, in this research, two resources x and y
are said to be �-path associated if there exists an undirected
path � of length n > 0 between them.

3 DESIGN FRAMEWORK

In this section, we present the basic idea of the discovery
system and the techniques that enable the relational
discovery within a distributed environment.

3.1 Design Overview

Because path discovery needs to locate not only the entities
but also all of the paths connecting them, it is considered
much more difficult than the entity discovery mechanisms.
Our proposed solution is inspired by the strategy of path
planning [4], [26], [27]. Consider the following analogous
problem of traveling by a car from Seattle, Washington,
USA to Montreal, Quebec, Canada. More specifically, the
problem set is: “How to travel from 1000 Union Street in
Seattle, Washington to 2000 Avenue Du Parc in Montreal,
Quebec?” Given a detailed road map of North America, it
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may be a computationally expensive exercise to compute
the travel route with all possible roads annotated with
driving distances. Therefore, instead of working at such a
low level of detail, a human travel planner would prefer to
do the route planning at the state (province) level first. That
is to say, once “the path” reaches a state boundary, compute
the best route from state to state. For the aforementioned
example, a human traveler would probably prefer to do
the planning in three steps: 1) Travel from 1000 Union
Street in Seattle, Washington to a major highway leading
out of Seattle, Washington. 2) Plan a route from Seattle,
Washington to Montreal, Quebec. 3) Travel from the
incoming highway in Montreal, Quebec to 2000 Avenue
Du Parc in Montreal, Quebec. Steps 1 and 3 would require a
detailed road map of each of the cities. Step 2 could be
completed with a high-level map, with roads connecting
states, abstracting away all of the minor details.

We adopt a similar abstraction strategy (as discussed
above) for semantic relationship discovery. As shown in
Fig. 2, instead of starting from millions of semantic entities
and relationships at the lowest level, we consider each
knowledge base that contains multiple entities and relations
as an abstract unit. We assume that each peer hosts an
individual knowledge base. We treat these knowledge bases
as black boxes and ignore the detailed semantic entities and
the corresponding relations within the knowledge bases.
Thereafter, through ontology mapping (or integration) [50],
[51], [52], [53], [54] or interlinking with the same URIs, we
can connect knowledge bases to form a graph at a higher
level. The knowledge base-level semantic graph will act as
the blueprint of our distributed semantic knowledge bases.
As a consequence, the semantic path discovery problem is
analogous to the route planning problem. The aforemen-
tioned abstraction may drastically reduce the size of a
potentially huge search space. However, locating multiple

paths at the knowledge base level is still a challenging
problem due to the large number of such knowledge bases
and their distributed nature. To further improve the
efficiency of path discovery at this level, we propose a
novel discovery protocol that constructs zones on top of the
knowledge bases. Built at the top of the knowledge base-
level semantic graph, the zone layer uses a network routing
strategy to facilitate path discovery.

With the different levels of semantic graph constructed,
the path-finding problem is constricted to the following three
steps: 1) Locate the source and destination entities at the
entity-level graph. 2) Search at the level of peers or knowl-
edge bases for paths that originate from the source peer
(containing the source entity) and end at the destination peer
(containing the goal entity). 3) Retrieve the semantic path at
the level of entities. Such an abstraction equates a much faster

search. To efficiently locate the source and destination
semantic entities at the entity level, we adopt a distributed
hash table (DHT)-based overlay. Such an overlay is used to
index the entity-level semantic graph, which allows efficient
identification of semantic entities. The main focus of our
work is to discover semantic paths between semantic entities.
The basic idea is to create different levels of abstractions and
apply appropriate discovery scheme on each of them. In the
subsequent text, we present each part of the relation
discovery strategy in detail.

3.2 Semantic Graph Formation

To link the dispersed knowledge bases to form a connected
semantic graph, we propose a semantics-based topology
adaptation scheme to connect the knowledge bases contain-
ing similar semantic properties and facilitate the establish-
ment of semantic mappings or links. The foundation of this

scheme is a metric that measures peers’ semantic simila-
rities. In one of our previous studies [19], we extended the
previously reported distance-based approaches (e.g., [18],
[16], and [25]) to accurately measure the semantic simila-
rities between ontologies. Our proposed approach extends
the previous approaches by supporting multiple ontologies
and improves the accuracy by integrating factors, such as
the depth of a node in the ontology hierarchy and the type
of links. After semantically related knowledge bases have
been located, mapping or linking can be established
between these knowledge bases or in some scenarios
related knowledge bases can be merged.

The topology adaptation is a process of finding semanti-
cally related neighbors. This process can be performed at
different states of the life time of a node. That is: 1) on
joining the network, a node may choose neighbors based on
their semantic similarities, or 2) after updating its knowl-
edge base, a node will reevaluate its neighbor relationships
to connect to most related peers. This methodology ensures
that the underlying node topology will always reflect the
changing interests and data contents. The aforementioned

process can be achieved by peer-to-peer-based neighbor
discovery and overlay formation. We encourage the readers
to find more details about our proposed topology adapta-
tion scheme by referring to our previous studies, such as
[18] and [20].
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3.3 Semantic Entity Location

Another task for semantic path finding is to efficiently
locate specific semantic entities (e.g., the source and
destination entity) in the entity-level semantic graph. To
fulfill this task, we construct indexes on entities. As
mentioned above, entities are subjects and objects in the
RDF triples. Triples (in distributed knowledge base) that
share common entities (i.e., the same subjects and/or
objects) should be indexed together in one of the distributed
peers so that they can be located at a later stage. The
challenge in this scenario lies in assigning “index rendez-
vous points” for entities. To avoid bottlenecks (courtesy of
centralization), we use a DHT overlay to provide a
decentralized and scalable rendezvous for the RDF triple
entities. Each triple is sent to two rendezvous peers based
on the subject and object, respectively. This ensures that the
triples with common subjects and/or objects will always be
colocated. Unlike the data indexing of RDFPeer [8], we do
not index predicates (i.e., edges of the semantic graph). This
is due to the fact that normally, we only need to locate
entities of the semantic graph and not the edges. We store
each triple twice by applying a hash function to its subject
and object. The insertion operation of a triple t is performed
as follows:

InsertðtÞ � Insert(SHA1Hash(t.subject),t), Insert(SHA1-

Hash(t.predicate),t), Insert(SHA1Hash(t.object),t).

For example, the statement t : f<Billy>;<teaches>;
<cs213>g is first indexed by subject, and then sends the

following message to the overlay:

Insert fkey; fð‘‘subject’’; <Billy>Þ,
ð‘‘predicate’’; <teaches>Þ,
ð‘‘object’’; <cs213>Þgg,
where key ¼ SHA1Hashð‘‘<Billy>’’Þ.

In the above message, the first attribute-value pair (“sub-
ject,” <Billy>) is the routing key pair, and the key is SHA1
hash value of the subject value. Similarly, the triple is
indexed by object as well. The DHT indexing guarantees
that the entities can be located within logðNÞ hops, where N
is number of peers in the Semantic Web.

4 SEMANTIC PATH DISCOVERY

With the semantic graph created and both source and goal
entities located, the next step is to locate paths between
the source and goal entities. This is the topic of the
subsequent sections.

4.1 Path Cost at the Peer Level

To discover path at the peer level, the optimal distances for
crossing each peer must be precomputed and cached. The
optimal distances are computed based on the entity-level
graph. For simplicity, we assume that each semantic edge
connecting two semantic entities has a unit cost. In reality,
we must distinguish edges and consider factors, such as
the context of the query, the relevance between the
neighboring entities, and the trust between knowledge
base owners. The above-mentioned factors can be handled
by adding weights to semantic edges without further
modifying our proposed algorithm. Each peer records a set

of distances (in terms of number of semantic edges in the
entity-level semantic graph) before they can be treated as a
“black box.” The distance that matters the most is the
shortest distance between knowledge bases. As depicted in
Fig. 3, knowledge base A is linked to knowledge bases B,
C, and D though common URIs or though the ontology
mappings (e.g., equivalentTo or seeAlso). The entities in A
that are mapped to other knowledge bases are called the
gateway nodes of A. For example, GAB, GAC , and GAD are
knowledge base A’s gateways to the neighboring knowl-
edge bases. Knowledge base A will only record the shortest
distances between the gateways to the adjacent knowledge
bases. As it will be further explained in Section 4.2.4, the
shortest distance between gateways will be used as an
upper bound to prune semantic paths beyond a predefined
limit of k at the knowledge base level. In Fig. 3, one can see
that from A’s local knowledge base min_dist ðGAB;GACÞ ¼ 2
(i.e., the minimum cost of the path from B to C via A is 2),
min_dist ðGAB;GADÞ ¼ 3;min distðGAC;GADÞ ¼ 4. With the
minimum costs between gateways defined, we can ignore
the details inside each peer’s knowledge base and treat
knowledge bases as nodes and the gateway costs as the
cost of edges between nodes.

Given two entities, there may be multiple paths between
the entities representing different semantic relations. As
shown by the small-world theory [3], any two persons in
the world can be connected by a link of six hops. The above
also applies to other relationships as well, such as the
relationships between two diseases, two genes, or a gene
and a disease. Therefore, it is not necessary to find a path of
very long length. Indeed, the relationship between two
entities connected by a long path is vague and difficult to
explain and understand [49]. Therefore, in our study, we set
a length limit k, and only consider finding semantic paths
with less than k semantic edges. In our experiment, we set
the default value for k to be equal to 6.

4.2 Semantic Zone Discovery Protocol

Using abstraction at the peer or knowledge-base level
reduces the search space. However, path discovery at this
level is still very challenging. Unlike the route planning
problems in which only one shortest path between a pair of
addresses is returned, our path discovery problem must
return multiple paths. Moreover, the network is dynamic
not only because peers may join or leave at all times but
also because peers may add or update their knowledge
base, which consequently may change the underlying
network topology. To address these challenges, we propose
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a novel decentralized and scalable discovery protocol,
termed the semantic zone discovery protocol (SZDP).

4.2.1 Overview

To find paths between two nodes, the most straightforward
way is to flood: 1) the query from the source to the network
until the query reaches the destination or 2) from both the
source and the destination until their boundaries meet.
However, flooding creates an enormous amount of network
traffic, and the latency experienced by the end users is
unacceptable. In fact, all on-demand discovery (i.e., dis-
covery when needed) approaches adopt some forms of
flooding. Although on-demand discoveries may utilize some
forms of optimizations methodologies, such as topology
adaptation, adaptive time to live (TTL), and flow control [7],
[6], [21], such methods still suffer from the long latency and
the associated large overhead. To reduce latency and query
traffic, routes must be planed beforehand. We call such kind
of discovery as proactive discovery.

Two traditional routing schemes, distance vector routing
and link-state routing, belong to the proactive discovery
scheme. In distance vector protocols, a node exchanges with
its neighbors a vector containing the current distance
information to all of the known destinations. This approach
works well for locating shortest paths between two nodes.
However, maintaining multiple paths between nodes
require huge discovery tables, which are impossible to
scale given large-scale networks. Therefore, we cannot use
distance vector-based discovery scheme to locate multiple
paths. On the other hand, in the link-state protocols, each
node disseminates the status of each of its links throughout
the network via flooding in the form of link-state updates.
Each node locally computes routes in a decentralized
manner using the complete topology information. Link-
state protocols do not record paths between each node pair.
Therefore, such protocols do not need a large discovery
table as required by distance-vector protocols. However,
due to flooding, link-state protocols cannot scale well given
a large-scale network. To solve the above stated problem,
we divide the network into zones based on the peer hops
and use link-state protocol inside of the zones. The semantic
paths are likely to be located inside the zone of the querying
node. This is because of the semantic locality property of the
semantic topology [43].

Our proposed discovery protocol, SZDP, is inspired from
the zone routing protocol (ZRP) [12] for mobile ad hoc
networks. The SZDP protocol must be considered different
from the ZRP protocol because ZRP only needs to locate
one shortest path from source to destination, while SZDP
must locate multiple paths to discover more than one
relationship between the entities. The cost computation of
SZDP also is different from ZRP. Unlike ZRP, SZDP does
not use the hop count as the cost but considers the cost of
the paths between gateways.

4.2.2 Architecture

The SZDP, as the name implies, is based on the concept of
semantic zones. Each node defines its own semantic zone,
which is the neighborhood area in terms of number of peer
hops, termed radius (r). The zones of the neighboring nodes
may overlap. An example of a semantic zone is depicted in

Fig. 4, where the discovery zone of A includes all of
the nodes within r ¼ 2. We must note that the nodes in the
graph are in fact gateways to the peers and the costs on the
edges are the gateway distances. For simplicity, readers can
interpret them as distances between peers. (Note that the
value of r is predefined by the application.) The setup value
of r is intriguing: It should not be set too large, which will
cause large amount of maintenance overhead; while it
should not be too small, because the zone may not contain
enough discovery information to find all of the paths.
Ideally, each node must maintain a zone that is manageable
by the node, and at the same time, it enables discovering
most of the important semantic relations within the zone.
For example, in Fig. 4, if the query’s semantic path limit k is
set to be not more than 6, then the query can be resolved
within A’s local zone. This is due to the fact that all of the
nodes whose shortest distance to A is less than k are within
A’s zone, i.e., a radius of 2 can cover all of the paths within
the set limit of 6. It is noteworthy to mention that the radius
r and semantic path limit k are two different concepts: r is
the number of peer hops (at the peer or knowledge base-
level), while k is the number of semantic edges (at the
semantic entity level).

4.2.3 Semantic Zone Discovery Protocol

The SZDP is a limited-depth link-state discovery protocol.
In SZDP, each node maintains link information for peers
that are within its discovery zone. Therefore, queries can be
solved solely within the discovery zone. The link-state
information is used to build and calculate the paths to all of
the known destinations. The following is a simplified way
of looking at the various steps of the protocol:

1. Each node generates link-state advertisements (LSA)
for the entire link set. The LSA includes a:

a. source identification sequence number S,
b. link-state age T ,
c. list of neighbors LN ,
d. cost of link C, and
e. level number l representing the number of hops

the LSA has passed (l starts from 0).

A node generates a LSA periodically, as well as in
response to the discovery of a new neighbor, a
semantic link, or when a neighbor changes state
from up to down or conversely. The LSA advertise-
ment will represent the collection of all link states on
that node.

2. All of the nodes will exchange link states by means of
limited broadcasting. Each node that receives a link-
state update must store a copy on the local link-state
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database and add one level to the level number l, i.e.,
l ¼ lþ 1. If l is less than the zone radius r, then the
node will propagate the update to the other nodes.
Each of the participating nodes constructs a graph,
termed as the link-state graph that is based on the link-
state database. The link-state graph is used to find
paths between nodes.

3. If not a sufficient number of changes occur in the
zone, such as many links being added or deleted,
then the traffic caused by transmitting LSA must be
considered to be trivial. Any changes that occur are
communicated via LSA, and the link-state graph is
reconstructed to reflect the update.

Algorithm 1 details the process of the LSA propagation.

Algorithm1. foward_LSA (LSA).

/* A node call this method when a LSA packet

is received*/

1. if the LSA packet has been received before

2. discard the LSA packet

3. Return

4. Update local link-state database

5. Increase LSA.l by 1

6. If LSA.l less than r

7. Insert current_node_id into LSA. LN
8. For each neighbor N except the node from which

the LSA is received

9. Send LSA to N

Let us assume that we have a network diagram with the
indicated semantic costs as reported in Fig. 4. Every node
will broadcast the corresponding LSA within the zone. For
example, A sends its LSA as shown in Table 1 to its
neighbors. A’s neighbors, for example B, will forward the
LSA to its neighbors after adding 1 to the level number l, as
shown in Table 2. Eventually, this LSA will arrive at every
node within the zone of A. Based on its LSA database, each
node can construct a zone graph. The LSA database of node
A is presented in Table 3. (For simplicity, we assume that the
cost is the same in both directions.) All of the nodes within
A’s zone are included in A’s LSA database. All of the LSAs
are flooded (with time to live—TTL r) through the network.
Flooding means that every node sends the received LSA to

all of its neighbors except to the one from where it has been
received. To avoid flooding of older LSAs, each LSA is
designed to hold a sequencing number. By observing the
sequence number, a node can determine if the newly arrived
LSA carries more recent information than the one that is
already in the database. Modulo N numbering is used to
avoid large sequencing. According to its link-state database,
a node can construct the link-state zone graph. For instance,
the graph shown in Fig. 4 is A’s link-state graph.

4.2.4 Border Casting

Based on its semantic zone graph, nodes can solve the path
discovery query very efficiently. As previously mentioned
in Section 4.2.2, the value of the zone radius r is normally
set to be large enough to cover a query’s semantic path
length limit k. Therefore, in most of the cases, the path
discovery query can be resolved within the querying node’s
local zone. A node receiving a request to discover the paths
to a destination first checks whether the destination is
within its local zone using its local semantic zone graph. If
the destination is within its semantic zone, then the node
can retrieve the paths based on local zone graph. Otherwise
(rarely), the route discovery query will be sent to the border
nodes that are r hops away. If the receiver of the route
request knows the destination, then it responds by sending
a route reply. Otherwise, it continues the process by
forwarding the request to its borders. In this way, the
discovery request spreads throughout the network.

Forwarding through the borders, termed border casting,
can be more efficient than flooding. This is due to the fact
that the route requests are only sent to the peripheral nodes.
Because the zones of borders may overlap with each other
as well as with that of the original query node, border
casting may create redundant query messages. To solve the
above-stated problem, we can use some query-control
mechanisms, such as caching or computing the overlaps
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to direct queries away from covered zones [44]. As
mentioned previously, due to the semantic locality property
[43], most of the queries can be solved within the local zones
and do not need to be forwarded to the borders.

4.3 Semantic Path Retrieval

Given a query that discovers the relationships between
entities A and B, the system first locates the two peers, say
PA, PB, in charge of these two entities. There may be
multiple such peers, as most probably they must have been
linked (as gateways) at the topology adaptation stage as
mentioned in Section 3.2.

To efficiently locate all of the paths between the source
and destination nodes whose length is less than k, we use
the depth-limited search algorithm [30], which is depth-first
search with a predetermined depth limit l. That is to say,
nodes at depth l are treated as if they have no successors.
The value of l is set to k� t, where t is the sum of distances
between the starting and ending entities to their respective
gateways. Path discovery is first performed at the peer level
(knowledge base-level). Using the depth-limit search, the
system can efficiently find all of the paths connecting PA
and PB at the peer or knowledge base level. The cost in a
node’s link-state database table (i.e., the minimum distance
between knowledge bases) is used as an upper bound to
prune paths beyond the hop limit at the peer level. That is,
if we find that the minimum cost of a particular path
passing through knowledge bases exceeds the predefined
hop limit k, then we do not need to retrieve this path at the
semantic entity level. Therefore, we can avoid unnecessary
computing and communication cost.

After the peer-level paths have been located, we can
further retrieve paths at the semantic entity level. First, we
need to find the semantic path from entity A to a gateway
node in PA, which lies on the path to PB. Similarly, we find
the semantic path from entity B to a gateway node in PB,
which lies on the path to PA. Thereafter, we will retrieve the
semantic entity paths following the peer-level paths.
During the entity-path retrieval stage, we also look into
the “black boxes,” i.e., the knowledge bases to enumerate
all of the possible path combinations connecting different
gateways. Using Fig. 3 as an example, from knowledge
bases B to C, which passes through the knowledge base A,
we may retrieve two possible paths: Path1: A1A3A4A5,
Path2: A2A4A5, with length 3 and 2, respectively. While
from knowledge bases B to D, which passes through
knowledge base A, we may retrieve four possible paths:
Path1: A1A3A6A7, Path2: A1A3A6A8, Path3: A2A4A3A6A7,
and Path4: A2A4A3A6A8.

4.4 Analysis of the Proposed Algorithms

In this section, we analyze some of the important properties
of the proposed algorithms. The time and communication
complexities of the topology construction algorithm (as
shown in Algorithm 1) and the path discovery algorithm
(as presented in Section 4.3) are listed in Table 4. To
construct the link-state database table that is needed for
routing queries, each node within the network periodically
(with update interval I) broadcasts the LSA within its zone.
For each node, the table update complexity is deemed to
be constant. For path discovery, if the path limit k is within
the range of a node’s zone radius r, then the path can be
retrieved instantly by peer-level depth-limit search of the

zone’s topology and the entity-level retrieval of the path
combinations between different gateways. On the other
hand, if path limit k is beyond the range of a node’s
zone radius r, then an on-demand border casting will be
performed to get the peer-level path that is beyond the zone
radius r but within k semantic hops.

We shall say that the proposed search algorithm is
correct if an execution returns paths from the source
semantic entity to the destination semantic entity. Using
the depth-first-based search, the semantic path discovery
algorithm returns entity-level paths connect the source
entity with the destination entity. That is, the proposed
algorithm can correctly discover the semantic relationships
between two semantic entities. Moreover, the path dis-
covery algorithm must also be considered complete in
theory. Our claim is based on that: 1) peer-level search is
based on depth-limited search strategy, which is a complete
search algorithm [33] with proven theoretical correctness,
and 2) exhaustive enumeration of all of the possible
candidate paths connecting different gateways and the
path-length limit of l at the semantic entity-level guarantees
the completeness of the proposed algorithm at the entity
level. However, large-scale distributed systems are dynamic
in nature as nodes may join, leave, or fail, which entails
that knowledge bases must be updated very frequently.
Therefore, in practice, the paths returned may not (in some
cases) be 100 percent complete. The simulated experimental
results in Section 5.2 further justify the correctness and
completeness of the proposed algorithm.

5 EXPERIMENTS AND DISCUSSION OF RESULTS

5.1 Experimental Setup

We tested the performance of the proposed mechanism
with both real and synthetic data sets. We used an open
knowledge base, DBpedia [37], as our knowledge source.
DBpedia extracts structured information from Wikipedia
and uses the RDF as a data model for representing
extracted information. The DBpedia knowledge base
currently describes more than 3.4 million entities, out of
which 1.5 million are classified in a consistent Ontology,
including 312,000 persons, 413,000 places, 94,000 music
albums, 49,000 films, 15,000 video games, 140,000 organiza-
tions, 146,000 species, and 4,600 diseases [37]. In particular,
we used the RDF dumps of triples from the infobox [37].

To simulate a distributed environment in which dis-
persed DBpedia knowledge can be shared, we created a
network simulator with 1,024 computers (nodes). Thereafter,
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TABLE 4
Complexity of the Proposed Algorithms

Acronyms—D: Diameter of the network; I: Periodical update interval; Z:
Maximum number of nodes in a zone; V : Number of nodes in the
network; N: Maximum number of neighbors per node; L: Number of
nodes on the longest reply path; P : Total number of nodes on all of the
reply paths; B: Number of border nodes; r: radius of a zone; k: length
limit of semantic paths.



we divided the dumped infobox triples into smaller parts
(subknowledge bases). In particular, we adopted the
RelFinder’s decomposition algorithm [55] to decompose
the DBpedia infobox graph into maximally connected
subgraphs. We only used the largest connected subgraph
in our experimental analysis. Thereafter, we applied a well-
known clustering algorithm to cluster the graph obtained
from the decomposition process into “communities” based
on the idea of edge betweenness [56]. A community is
defined as a group, where the nodes are densely connected,
but there are few connections between disparate groups.
Thereafter, we deployed each of these communities on one of
the nodes within the simulated network. To model the
interknowledge base ontology mappings or links, we used
the preexisting links connecting entities that were located in
different subknowledge bases after knowledge base decom-
position. Therefore, we converted the centralized DBpedia
knowledge base to a set of smaller knowledge bases and
distributed them in the network.

To better control the semantic data and imitate the
natural semantic mapping between autonomous organiza-
tions in a large distributed network, we used synthetic data
sets to test our proposed approach. Because the ontology
data can be characterized by many factors, such as the
number of classes, properties, and individuals, we gener-
ated the test data in multiple steps that are detailed in the
subsequent text. The data generation started with the
ontology schema. Each schema included the definition of
a number of classes and properties. Because our work
primarily focuses on discovering semantic relations, we
created only object properties without any data type
properties. Each object property linked two classes, one as
the domain and the other as the range. The classes were
instantiated by creating a number of individuals of the
classes. To generate an RDF instance triple t, we first
randomly chose an instance of a class C among the classes
to be the subject sub(t). A property p of C is chosen as the
predicate pre(t), and a value from the range of p to be the
object obj(t). The range of the selected property p is instances
of a class C’, i.e., obj(t) is a resource.

We used BRITE [22], to generate network topologies. Our
simulator used a parser that can parse the output file
exported by BRITE to create the targeted topology. Power-
law distributions (also known as heavy-tailed distributions)
have been observed in the Internet and also in the case of
Semantic Web [46], [47]. Therefore, we incorporate power
law in the topology generation by using Waxman and
BarábasiAlbert models. Moreover, the knowledge base
distribution also follows the power-law distribution. In
particular, we use a Zipf distribution [57] to model the
distribution of the knowledge base.

Once the network topology is established, all of the
nodes in the network generated their semantic instance data
using the above-mentioned procedure. For simplicity, we
constructed instance mappings between neighboring nodes,
i.e., we assume semantic mappings have been created.
Queries were generated by providing two semantic entities,
the source and the destination. The source was picked
randomly from a peer’s knowledge base. We also randomly
picked a semantic path starting from the source entity with

a path of length limit (1-10), which led to a semantic entity
that is labeled as the destination. The path may also cross
multiple peers (knowledge bases). Therefore, the query was
to find all of the paths (of length limit k) between these two
semantic entities. Each experiment was repeated 10 times
with different random seeds, and the results (reported in
this paper) are the average of the obtained results.

The various simulation parameters and their default
values are listed in Table 5. To simulate an open large-scale
distributed environment, the network size was varied within
the range of [512, 4,096]. As mentioned previously, we adopt
Waxman and BarábasiAlbert models to simulate the power-
law network topology. According to existing research on
DBpedia, the average number of outgoing connections of an
object is 5.67, and the distance between any two objects is
normally within 5-9 steps [55]. Considering that the DBpedia
is a very large complex knowledge base, our parameters set
for the number of semantic links per entity and the path
length limit would be large enough to model the distributed
knowledge bases. The values of the zone radius were set
based on our prior studies [20], [59] and experimental results
reverified in this study. To simulate a dynamic environment,
the knowledge bases continuously update. The query
frequency and the knowledge base update frequencies were
modeled as a probability in each time slice.

5.2 Experimental Results

5.2.1 Experiments Based on Real Knowledge Base

We began to evaluate the correctness of the proposed
discovery scheme using the DBpedia knowledge base. We
first discovered the relationships between two entities in
the parsed centralized DBpedia knowledge base and record
the results. Thereafter, we divided the knowledge base into
subknowledge bases and deployed them on the simulated
nodes within the network. We applied our proposed
approach to perform resource discovery and compared
the results with a centralized knowledge base.

Fig. 5 depicts the example results of relationships
between two entities “Bill Clinton” and “Barack Obama”
returned by our proposed distributed approaches. It is
exactly the same as the expected result returned through
querying the centralized knowledge base. The length limit k
was set to 2 in this experiment. (Note that the entities in the
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TABLE 5
Important Parameters Used in the Simulations



brackets are properties (“dbppro” in DBpedia dump)).
We did not consider the direction of the links in this set of
experiments. Fig. 6 illustrates the recall rate of the proposed
distributed discovery scheme, which refers to the fraction
of the semantic relations that are relevant to the query that
are successfully retrieved. Relations obtained from the
centralized knowledge base were used as the standard
answers. The results illustrate that the proposed approach
can find all of the related relationships. It is difficult to
determine which relationships are of relevance in a certain
situation and which irrelevant [49]. Therefore, our work
focuses on locating as many relationships as possible
without considering the precision.

To evaluate the scalability and efficiency of the proposed
discovery protocol SZDP, we compared its performance
with breadth-first search (BFS)-based discovery scheme [1],
[42] in terms of average bandwidth and the number of
semantic entities traversed. BFS-based discovery [1], [42]
was used as the benchmark scheme because of its simplicity
and popularity [45]. In the simulations, a random set of
nodes periodically issue discovery queries. The queries
were to find the relationships between a local entity of the
querying node and another entity randomly selected from a
node in the network. In each simulation time slice
(1 second), the query probability for a given node was set
to 0.1 percent. The length limit of the relations k was set to 4.
Zone radius was also set to 4. As can be seen from Figs. 7
and 8, our proposed discovery protocol SZDP significantly
outperforms BFS-based discovery in terms of the band-
width consumed and the number of semantic entities
traversed. (Note that Fig. 8 was plotted on a logarithmic
scale to better illustrate the significance of the proposed
methodology.) This justifies the efficiency of the proposed
discovery scheme.

5.2.2 Experiments Based on Synthetic Data

In the previous experiments, we used the DBpedia data
dump as our knowledge base. Figs. 5, 6, 7, and 8 have
justified the correctness and efficiency of the proposed

approach. However, DBpedia is a centralized stand-alone
database. Therefore, to evaluate our discovery approach, we
must divide DPpedia into multiple subknowledge bases
and use the original properties or links as mappings
between knowledge bases. This does not reflect the real
working scenario of our approach, within which knowledge
bases are created autonomously and independently, and
mappings are constructed between related nodes. To solve
the aforementioned problem, we turn to synthetic data sets
to test our proposed methodologies. The experiments in the
rest of this section focus on evaluating important properties
of the proposed approach and are performed on the
synthetic data that we had created.

First, we studied the properties of the hierarchical
discovery scheme. Our proposed discovery algorithm uses
a hierarchical and multiresolution strategy to search for
semantic paths. We believe this strategy improves the
scalability of the system. To test this hypothesis, we first
evaluated the effectiveness of the hierarchy (or say
abstraction) strategy. Fig. 9 compares the number of
semantic entities traversed when searching at different
levels of abstractions. That is to say, from the low-level
semantic entity search to the knowledge base-level peer
search, and finally to the more abstract zone-based search.
We assume that the source and destination entities have
been located for all of these three cases. As can be observed
from Fig. 9, by using levels of abstraction and applying
routing technologies, our discovery protocol SZDP signifi-
cantly reduces the search space and improves scalability. It
is noteworthy to mention that the number of entities
traversed by SZDP is always less than 100 for the four
networks, which is considerably less than both of the entity
broadcast and peer broadcast approaches. We must note
that the results of the SZDP are obtained after the routing
structure has been constructed. That is, we did not consider
the preprocessing overhead. We can ignore the preproces-
sing overhead because: 1) The preprocessing overhead is
not very high (as reported in Fig. 11), and 2) once the initial
routing structure is constructed, the system will not
produce that overhead anymore.

Second, we evaluated the performance of our proposed
end-entity location mechanism. Locating the two end
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Fig. 5. Discovered relationships between two entities in DBpedia using
the proposed discovery approach.

Fig. 6. Recall of the proposed discovery approach versus semantic
relation length limit.

Fig. 7. Average bandwidth consumption.

Fig. 8. Number of entities expanded versus relation path length.

Fig. 9. Performance of discovery at different levels of abstraction.



entities of a semantic path is another important issue
affecting the efficiency of the system. In this experiment, we
measured the performance of locating source and destina-
tion entities by using a DHT indexing overlay. We adopted
Pastry [28] to realize the DHT index overlay. Each peer was
assigned a 160-bit identifier, representing 80 digits (each
digit uses 2 bits) with base b ¼ 2. We varied the number of
Pastry nodes in the network between 512 and 4,096. Fig. 10
reports the average number of routing hops taken as a
function of the network size. The results show that the
number of route hops scales with the size of the network as
hypothesized. With DHT indexing, the network can quickly
locate the end entities and more importantly, nodes sharing
the same instances can meet each other to merge or
construct mappings or linkages.

Next, we measure the impact of the zone radius to the
performance of the system. Intuitively, the zone radius r
determines how far resource information can be propagated
and how much a node can learn about the network. We can
manipulate the tradeoffs between the routing maintenance
overhead and query overhead by adjusting the radius.

First, Fig. 11 shows the total message overhead of the
whole network to construct the link-state table. The network
size in this experiment is 4,096. When radius r ¼ 1, nodes
do not need to exchange routing information and do not
maintain the link-state table. However, nodes cannot know
their neighborhood information. With the increase in r, the
coverage grows exponentially and nodes must manage
larger semantic zone graphs. Fortunately, this link-state
initiation process is only performed only at the beginning of
the network construction. Once each node has constructed
its link-state database, the update can be done periodically
and incrementally. The overhead is negligible if the net-
work is relatively stable.

Second, Fig. 12 illustrates the relationship between the
zone radius r and the average number of query messages
propagated for a query with path length limit k ¼ 25. The
network size in this experiment is 4,096. We used caching
and overlapping computation techniques [44] to control

the duplicated messages of border casting. When the radius
is set as 1, the SZDP algorithm degrades to a flooding
algorithm. With the increase in the radius, the query
overhead decreases dramatically. When the radius increases
to 3, most of the queries can be answered in the querying
nodes’ local zone. Therefore, further increase in r is not
necessary. In this experiment, we set path length limit k ¼ 25
and increase the radius to 4. This is only for demonstration
purposes. As we have explained in Section 4.2.2, in reality, a
reasonable number for k is normally less than 10. In that
case, a small radius r would cover all the queried paths. For
example, in Fig. 4, r is set to 2 and all of the path queries with
length limit k � 6 can be answer within the zone. In this
case, further increasing r is a waste because it only causes
more system overhead without bringing any benefit.

The simulation results demonstrate the unique proper-
ties and superior advantages of the proposed discovery
scheme, SZDP. The experiments performed on real DBpedia
data illustrate the practicality, correctness, and efficiency of
SZDP (Figs. 5, 6, 7, and 8). The simulations performed on
synthetic data justify the scalability and efficiency of SZDP
in a large-scale distributed environment. In particular, we
analyze the performance of the major components of SZDP
in terms of scalability and efficiency of:

1. knowledge abstraction (Fig. 9),
2. DHT-based entity lookup (Fig. 10),
3. query (Fig. 11), and
4. maintenance (Fig. 12).

We must also report that we were not able to compare
SZDP with other related systems. To the best of our
knowledge, there is only one previously reported work
[15] on discovering semantic relationships in distributed
environments. However, the approach presented in [15] has
not been implemented or experimentally evaluated or
benchmarked using simulations. Moreover, many technical
details (as mentioned in Section 1) are not addressed in the
work reported in [15]. Therefore, we could not implement
the approach by following the description outlines in [15].
However, we have made every possible effort to make our
simulation study as thorough as possible so that all aspects
of the proposed system can be highlighted.

6 RELATED WORK

Most of the current research on searching or querying
Semantic Web uses an information retrieval (IR)-based search
engine [10], [11], [14], [32]. The IR-based systems, such as
Swoogle [10] and SWSE [14], index the Semantic Web by
crawling and indexing the Semantic Web RDF documents
that are found online and then offer a search interface over
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Fig. 10. Performance of end entity lookup.

Fig. 11. Message overhead of constructing the link-state database table
for various zone radius.

Fig. 12. Query overhead to discover in zones of various radius.



these documents. However, the IR-based searching techni-
ques do not provide structured query capability.

Several groups [5], [9], [13], [17] have developed
technologies to store RDF nodes, edges, and labels into
relational database systems, such as MySQL, Oracle, and
DB2 so that Semantic Web data can be efficiently indexed
and retrieved. The above-mentioned works translate a
SPARQL query into SQL statements that are evaluated on
the triplet stored in the relational databases.

To address scalability issues, researchers have adapted
P2P technologies to Semantic Web. Systems, such as
Edutella [23] and InfoQuilt [2], use broadcast or flooding
to search the RDF data, while many other projects, such as
RDFPeer [8] and OntoGrid [24], apply DHT-based techni-
ques [28], [31] for the retrieval of ontology-encoded knowl-
edge. The queries that we address (in this paper) are
fundamentally different from those described in any of the
above-mentioned approaches. Queries in the aforemen-
tioned approaches are mostly concerned with locating
specific resources that satisfy specific constraints, while
we focus on locating relations between resources.

There have been many works on semantic relation
discovery using data mining approaches, such as associa-
tion rules and clustering [38], [39], [40], [41]. However, their
data sets are quite different from our semantic link-based
data, and their discovery mechanisms are normally based
on the co-occurrence of the entities in documents, which is
significantly different from our work.

The query supporting RDF semantic relationships were
first proposed by Anyanwu and Sheth [1]. In particular,
they define a semantic association as a complex relationship
between two resources and introduce a set of operators for
querying semantic associations. Based on their work,
several applications have appeared that use semantic
relations [33], [34], [42], [49], [55]. However, most of these
applications assume a centralized data set. Researchers in
[15] propose a method for computing semantic associations
over a P2P network. The authors use a superpeer-based
query planning algorithm for �-path quires. In their
proposed system, knowledge bases are stored at the peer
level, while indexes are stored at the superpeer level. Each
superpeer is responsible for a group of peers. A superpeer
knows about all of the other superpeers in the network and
can query them to determine the semantic paths. This is an
effective approach, but the scalability is still an unsolved
issue. That is, 1) how to organize the peer group to reflect
the semantic closeness, and 2) how superpeers efficiently
communicate are unaddressed.

Path finding using hierarchy is described in [4], which
abstracts a map into linked local clusters. At the local level,
the optimal distances for crossing each cluster are pre-
computed and cached. At the global level, clusters are
traversed in a single “big” step. Such a hierarchy can be
extended to more than two levels, and small clusters
are grouped together to form larger clusters. Computing the
crossing distances for a large cluster uses distances
computed for the smaller contained clusters. Related to
the aforementioned work, there also are other works [26],
[27] that use hierarchical approach for path finding. Our
hierarchical routing was inspired by the path-finding

problems. However, unlike the path-finding problems

reported in [4], [26], [27], we do not have a complete view

of the “map” rather we only have pieces of “maps”

distributed all over the network. Therefore, we merge the

path-finding problem with the network routing problem to

identify novel solutions for web semantics.

7 CONCLUSIONS

In this paper, we presented a scalable and efficient

approach to discover complex semantic relationships from

distributed knowledge bases. This approach allows users to

share their local knowledge to collectively make new

discoveries. By correlating isolated islands of knowledge

base, we constructed a large-scale semantic graph. The

relation discovery problem was then converted into a path

discovery problem over the semantic graph. Inspired by the

route planning problem, we adopted abstraction to reduce

the huge discovery space. The proposed technique defined

the semantic graph on three levels: entity level, knowledge

base level, and zone level. At the knowledge base level,

the optimal distances for crossing each knowledge base

were precomputed. A zone-based discovery protocol was

proposed to efficiently search at the knowledge base level.

This method also supported path discovery in dynamic

environments. The experimental results revealed the scal-

ability and efficiency of the discovery framework.
As future work, we plan to incorporate richer semantics

as well as security or privacy enforcement into the system.

In particular, we will add weights to the semantic links

based on trust, property of the relation relevance, and so on.

We also plan to study how to efficiently rank the discovery

results in a large-scale Semantic Web. Moreover, we also

aim to evaluate the proposed approach on real knowledge

bases over the Internet.
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“Distributed Reasoning in a Peer-to-Peer Setting: Application to
the Semantic Web,” J. Artificial Intelligence Research, vol. 25,
pp. 269-314, 2006.

[52] G. Qi, Q. Ji, and P. Haase, “A Conflict-Based Operator for
Mapping Revision,” Proc. Eighth Int’l Semantic Web Conf., pp. 521-
536, 2009.

[53] P. Haase, R. Siebes, and F. Harmelen, “Peer Selection in Peer-to-
Peer Networks with Semantic Topologies,” Proc. Int’l Conf.
Semantics in a Networked World (ICNSW ’04), pp. 108-125, 2004.
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