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Abstract. With the rapid growth of Grid computing, more and more data are generated and 
stored across the grid. To fully utilize the data, efficient data search and query answering me-
chanism is becoming a very important issue. However, the sheer amount of data and their he-
terogeneity nature pose challenges that current technology cannot cope with efficiently.  In 
this paper, we propose an efficient query answering solution that integrates topology adapta-
tion, semantic query routing, and view-based caching techniques to reduce bandwidth cost of 
distributed query processing while allowing efficient evaluation of complex semantic queries 
over large-scale, fully decentralized, and semantically heterogeneous grids. Simulated expe-
rimentations illustrate that our comprehensive query strategies effectively reduce the cost of 
query evaluation and improves the query performance.   
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1  Introduction 

The Grid is a distributed computing infrastructure that enables coordinated resource sharing within 
Virtual Organizations (VO) [12] consisting of individuals, institutions, and resources. Nowadays, 
large communities of people distributed around the world are increasingly using Grid to share 
resource and data at numerous levels: inside an organization, across organizations, and even 
worldwide. One of the key challenges in today's Grids is the need to deal with knowledge and data 
sources that are distributed, heterogeneous, and dynamic. In such systems, a complete global view 
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or understanding is impossible to achieve. Therefore information services need to go beyond the 
centralised strategy to a decentralized, distributed, semantics-based strategy. The Semantic Grid 
[34] aims to address this issue by adding meaning (ontologies, annotations and negotiation proc-
esses as studied in the Semantic Web and Software Agent paradigms) to the Grid. In this way, the 
Semantic Grid not only provides a general semantic-based computational network infrastructure, 
but a rich, seamless collection of intelligent, knowledge-based services for enabling the manage-
ment and sharing of complex resources and reasoning mechanisms.  

To locate desirable data and information from semantic grid in a timely and reliable manner, ef-
fective query and discovery mechanisms are required. Query evaluation in a large-scale semantic 
grid is challenging due to the considerable diversity of data schema, large number of data, dynamic 
behavior of the data source, and geographical distribution of the dataset. The recently proposed 
Data Grids [9] have evolved to tackle the challenges of large datasets and multiple data reposito-
ries at distributed locations by providing high capacity resources such as supercomputers, high 
bandwidth networks, and mass storage systems.  However, increasing capacity does not fundamen-
tally solve the problem. A single query may involve transferring of large amount of data among 
many geographically distributed nodes in the grid network. A query intensive system may easily 
be overwhelmed by large amount of query traffic. Therefore, scalable query answering and opti-
mization are vital to query-intensive grids.  

Peer-to-peer (P2P) technology has been used as a solution to distributed query evaluation, be-
cause it scales to very large networks, while ensuring high autonomy and fault-tolerance.  The 
recently proposed structured P2P systems in the form of Distributed Hash Tables (DHTs) [26, 28, 
29, 32] are a promising approach for building massively distributed data management platforms. 
However, they offer few data management facilities, limited to IR (Information Retrieval) -style 
keyword search. Keyword search is appropriate for simple file-sharing applications, but is unable 
to deal with complex semantic queries which have various properties and sophisticated relations 
with each other.  More recently, a few studies [8, 24] extended the DHT-based P2P to support 
semantic queries. The basic idea is to map each keyword of a semantic entity to a key. For exam-
ple, RDFPeer [8] indexes each RDF [7, 17] triple to support semantic RDF query. A query with 
multiple keywords then uses the DHT to lookup each keyword and returns the intersection. Sys-
tems, such as [26], avoid this multiple lookup and intersection by storing a complete keyword list 
of an object on each node. In this way, the DHTs can support multi-keywords queries. However, 
DHTs still have difficulty to support other semantically richer queries, such as wildcard queries, 
fuzzy queries, and proximity queries. In addition, most DHT-based applications require all peers in 
the system sharing a uniform schema, which is impractical in reality. These limitations restrict the 
deployment of DHTs to semantic data discovery.  

In this paper, we propose a query answering mechanism that works in a fully decentralized and 
scalable way. Query evaluation in our system will address the challenges of diversity of schema, 
large amount of data, and geographical distribution of the dataset. As pointed out by Tatarinov et 
al. [30], it is neither practical to maintain a global schema for all nodes in a grid to map their local 
schemas with, nor is it feasible for a node to map its schema with all other nodes’ schemas; a bet-



ter approach is to let each node connect to and construct mapping with one or a few peer nodes, 
then queries can be translated between different peers. In our system, users can pose queries with 
their preferred local ontology/schema. Our query evaluation scheme will propagate queries to the 
network using pair-wise ontology mapping to translate the query between different ontologies and 
return a relatively complete set of relevant data in that preferred ontology. It thus achieves the 
ontology mediation capabilities of a data integration system, but in a more extensible, decentra-
lized way. Moreover, we optimize the query evaluation system with novel and effective algorithms 
which make distributed query evaluation both bandwidth-efficient and cost-effective. In particular: 

1. We propose effective topology adaptation schemes that organize the network according 
to semantic properties of participating nodes in order to improve system scalability and 
reduce information loss caused by transitive query reformulation. 

2. We design a view-based ontology mapping scheme to facilitate information sharing 
among nodes with different ontology.   

3. We propose a query routing algorithm based on semantic similarity and view-based 
query containment caching, which helps eliminate redundant queries, speedup query 
evaluation, and reduce network traffic. 

4. We propose a mechanism for result collecting by efficiently pipelining and integrating 
results along querying path. 

The rest of the paper is organized as follows. Related work is presented in Section 2. Section 3 
describes the detailed design of our proposed system.  In Section 4, we evaluate the proposed me-
thods and show the effectiveness of our proposed system with a comprehensive set of simulations. 
Concluding remarks are provided in Sections 5. 

2  Related Work 

The prevalence of the Internet and the boom of the P2P applications have brought an important 
shift in the way data is created, shared, stored, distributed, and manipulated. As such, the applica-
tions must manage data in a large-scale and distributed environment and resolve heterogeneities 
with respect to the schemas and their data. Some distributed data management systems have 
emerged, allowing users to query and retrieve data from each other. In this section, we present 
some important research works related to this issue. 

Edutella[22]  is a P2P network for searching semantic web metadata. Each Edutella peer can 
make its metadata information available as a set of RDF statements. The distributed individual 
RDF peers register the queries they may be asked through the query service (i.e., by specifying 
supported metadata schemas), and queries are sent through the Edutella network to the subset of 
peers who have registered with the service to be interested in this kind of query. The mediation 
process is done in two steps: when queries can be answered completely by one peer, it uses a sim-
ple mediation model. When query results are distributed on several peers, it relies on the integrat-
ing mediators or hubs. These mediators or hubs translate a query to a set of sub-queries which are 



forwarded to corresponding heterogeneous peers. To forward queries between nodes or hubs, Edu-
tella uses JXTA to broadcast queries to a HyperCup topology. The simple P2P broadcast structure 
used by Edutella makes it very difficult to scale to large-scale networks. 

In a contemporary work by Bernstein, Giunchiglia et al. [5], the authors argued that one cannot 
assume the existence of a global schema for all the peer databases. Instead, they treated the data 
being managed within the P2P network as an open collection of possibly overlapping and inconsis-
tent databases. The inter-dependencies between local peer databases were described by the “coor-
dination formula” and were defined by a declarative language. This model is hence called the 
“Local Relational Model”. However several issues were not covered in their work including the 
protocol setting up acquaintances and exchange peer names, query optimizations and constraints 
on query propagation, etc. 

Same as the Local Relational Model, the authors of Piazza [14] also based their work on the as-
sumption that a global schema is not possible. They used two kinds of schema mappings: “peer 
descriptions” which map between each peer’s “view of the world”, and “storage descriptions” 
which map a peer’s “view of the world” to the specific data at the peer. Queries are sent out in a 
flooding manner and translated along the path using the peer descriptions. This flooding-based 
query forwarding also has the scalability and efficiency problem. The Piazza project did not give 
any optimization suggestion on the query forwarding/routing. 

While Piazza assumes static pair-wise mappings, the Chatty Web [1] manages the mappings in 
an evolutionary and decentralized process that relies on the initial pair-wise local interactions.  
During the life-time of the system, each peer has the potential to learn about existing mappings and 
add new ones. As a result, the network converges to a state where a query is only forwarded to 
peers that are most-likely to understand the query and where the correct mappings are increasingly 
reinforced.  

Similar to Chatty Web, PeerDB [23] also tries to make the “best” peers topologically close to 
the query originator. However it does rely on some global names lookup servers to track the IP 
address and status of every peer. The query answering process is facilitated by agents: the relation 
matching agents would firstly use IR techniques to find out promising peers, then the data retrieval 
agents translate the submitted queries to those peers. 

While all these solutions deal with the data heterogeneity in P2P networks, most of them do not 
aim at getting complete result set. The Edutella system [22], for example, would only send the 
query to a specific peer if it believes this peer can answer the query. While it is easy to tell if a peer 
is able to answer a query given its schema, it is far more difficult to tell that the data a peer pro-
vides serves the query issuer’s need completely. Other issues that these work omitted are the sys-
tem and scalability and query processing optimization, which is the main focus of our work. 



 3  System Design 

In this section, we present the design of our query evaluation system, aiming at resolving the hete-
rogeneity, scalability, and efficiency problems faced by query evaluation of large-scale semantic 
grids.  

3.1 System Overview 

For efficient sharing and collaborating over a large-scale network composed of nodes that are 
semantically heterogeneous and geographically distributed, our system provides a query answering 
mechanism in a fully decentralized and scalable way.  As shown in Fig.1, the system consists of 
two layers: (a) a physical network layer and (b) a virtual semantic overlay layer.  Nodes in the 
physical network layer are assumed to be connected physically.  Nodes in the virtual semantic 
layer are connected by virtual semantic links and are referred to as neighbors.  Each node has its 
own ontology. Once the neighbor-relationships are established, nodes can construct mapping with 
their neighbors. Queries can be translated between peers according to pair-wise ontololgy mapping. 
To improve the scalability and efficiency of query evaluation, our optimization is performed in the 
following aspects: (1) topology adaptation, (2) view-based ontology mapping, (3) query forward-
ing based on semantic containment and view-based caching, and (4) pipelining and combining the 
results along the path. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 1. Example of ontology mapping 

Physical Grid

Virtual Overlay

physical link
virtual link with bidirectional ontology mapping



3.2  Topology Adaptation 

The objective of topology adaptation is to make the system’s dynamic topology match the se-
mantic clustering of peers. This would allow queries to quickly propagate among relevant peers. In 
addition, this adaptation allows semantically related peers to establish ontology mapping relation-
ships to reduce information loss in the query reformulation process. The rationale behind the to-
pology adaptation is based on two theories of the existing research (1) The most promising peers 
who are able to answer a particular query are those who are more similar with the querying peer 
[6]. (2) Connecting and constructing schema mapping with semantically similar nodes will reduce 
information loss caused by query reformulation [15]. We organize the network as an unstructured 
peer-to-peer (P2P) network which is capable of answering arbitrary types of queries. The network 
topology is adapted according to nodes semantic similarities. In our system, topology adaptation is 
performed at different states of a nodes’ life time: (1) upon joining the network, a node chooses 
neighbors by their semantic similarity. (2) A node also gradually updates its links according to its 
query processing experiences, so that its topology always reflects its changing interest and data 
contents.   

3.2.1 Ontology summarization 

To configure the network topology according to nodes’ semantic similarity, the first task is to 
measure the semantic similarity between nodes.  There has been extensive research [16, 18, 27] 
focusing on measuring the semantic similarity between two objects in the field of information 
retrieval and information integration. However, their methods are very complex and computation-
ally intensive. In this paper, we propose a light-weight method to compute the semantic similarity 
between two nodes. To compute the semantic similarity, we first summarize each node’s semantic 
properties. We use a node’s Terminology Box (TBox) [3] ontology to define its high-level con-
cepts and their relationships. TBox is a good abstraction of the ontology’s semantics and structure. 
We use keywords of a nodes’ TBox ontology as its ontology summary. Because a semantic mean-
ing may be represented by different labels in different ontologies, while it is also possible that the 
same literal label in different ontologies means totally different things. Ontology comparison based 
on TBox keywords may not yield satisfying results. Therefore, we extend each concept with its 
semantic meanings in WordNet [11], so that semantically related concepts would have overlaps. 
We use two most important relationships in WordNet – synonyms and hypernym – to expand 
concepts.  

After extension, a node’s ontology summary set may get a number of unrelated words, because 
each concept may have many senses (meanings), and not all of them are related to the ontology 
context. A problem causing the ambiguity of concepts is that the extension does not make use of 
any relations in the ontology. Relations between concepts are important clues to infer the semantic 
meanings of concepts, and they should be considered when creating the ontology summary. There-



fore, we utilize relations between the concepts in an ontology to further refine the semantic mean-
ing of a particular concept. Only words with the most appropriate senses are added to the summary 
set. Since the dominant semantic relation in an ontology is the subsumption relation, we use the 
subsumption relation and the sense disambiguation information provided by WordNet to refine the 
summary. It is based on a principle that a concept’s semantic meaning should be consistent with its 
super-class’s meaning. We use this principle to remove those inconsistent meanings.  For every 
concept in an ontology, we check each of its senses; if a sense’s hypernym overlaps with this con-
cept’s parent’s senses, then we add this sense and the overlapped parent’s sense to the ontology 
summary set.  In this way we can refine the summary and reduce imprecision.  

3.2.2 Semantic Similarity 

To compare two ontologies, we define an ontology similarity function based on the refined ontol-
ogy summary. The definition is based on Tversky’s “Ratio Model” [31] which is evaluated by set 
operations and is in agreement with an information-theoretic definition of similarity [21]. Assume 
A and B are two nodes, and their ontology summary are S(A) and S(B) respectively. The semantic 
similarity between node A and node B is defined as: 
 

 
 
In the above equations, “∩” denotes set intersection, “–” is set difference, while “||” represents set 
cardinality, “α” and “β” are parameters that provide for differences in focus on the different com-
ponents. The similarity sim, between A and B, is defined in terms of the semantic concepts com-
mon to A and B: S(A)∩S(B), the concepts that are distinctive to A: S(A)–S(B), and the features that 
are distinctive to B: S(B) – S(A).  Two nodes, node A and node B are said to be semantically re-
lated if their semantic similarity measure, sim(A,B) exceeds the user-defined similarity threshold t 
(0<t≤1). 

3.2.3 Topology adaptation 

The construction of an ontology-based topology is a process of finding semantically related 
neighbors. A node joins the network by connecting to one or more bootstrapping neighbors. Then 
the joining node issues a neighbor-discovery query, and forwards the query to the network through 
its bootstrapping neighbors. The bootstrapping neighbors then use strategies, such as [20], to effi-
ciently propagate the neighbor discovery query to the network to find semantically related 
neighbors for this new node. After this neighbor-discovery process, a new node is positioned to the 
right semantic virtual organization in the network, facilitating efficient query forwarding.  
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Because of the dynamic property of the large-scale grid network, and the evolution of nodes’ 
ontology property, neighbor discovery for a joining node is not once and for all, but rather the 
first-step of our topology adaptation scheme. A node should keep updating its neighbor links ac-
cording to its query experiences, including queries it received as a query forwarding router, and 
query result it collected as a query requestor. Based on the query experiences a node may add or 
delete neighbors according to the dynamic semantic environment. This way, the network topology 
is reconfigured with respect to peers’ semantic properties, and peers with similar ontologies are 
close to each other. 

3.3. View-based ontology mapping 

As soon as a new node find its position in the network, it establishes ontology mappings with its 
neighbors, who posses similar ontologies with itself. In our system, ontology mappings between 
nodes are based on TBox ontology view. Fig. 2 illustrates the mapping between two neighbors: 
peer1 and peer2. Mappings are described by dashed arrows between the mapped ontology ele-
ments. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 2. Example of ontology mapping 
 
Fig. 3 illustrates the RDF [17] views corresponding to semantic mappings in Fig.2, in which 

peer2 advertises its ontology to peer1.  Mappings are defined as views in the form of datalog. It 
can be viewed as a query over the ontology. Peer2’s advertisement based on this view is capable to 
answer query patterns using peer1’s ontology.  
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V: p2(?name, ?course) :- 
    (?x rdf:type p1:Prof). 

    (?x  p1:name ?name). 
    (?x  p1:teach ?c). 
    (?c  rdf:type p1:Course). 

    (?c  p1:title ?course). 

Fig. 3. View example 

With the view-based mapping constructed, a node can determine where to forward a query and 
rewrite the query accordingly.  

3.4. Cost-efficient query evaluation  

Efficient query forwarding/routing is another critical factor determining the system performance 
and usability. Our query forwarding strategy tries to optimize query forwarding paths and elimi-
nate redundant queries. In particular, we utilize the semantic similarity metric proposed in Section 
3.2.1 to guide query forwarding; and we propose a containment-based caching strategy to reduce 
unnecessary query traffic. 

In a distributed and unstructured network, queries are evaluated by forwarding between neigh-
bors. Our semantic similarity function can be used as an effective metric to direct queries only to 
related neighbors. However, there is still chance of large number of duplicated messages flooding 
in the network. For an ontologically homogenous network, this flooding-based query forwarding 
can be optimized by existing approaches such as [10] and [19]. These approaches can reduce or 
eliminate redundancy by cutting flooding paths, since as long as one copy of the query message 
reaches the target nodes, the query can be evaluated correctly and get a complete result set. How-
ever, in a semantically heterogeneous grid, optimization cannot be done by simply cutting the 
flooding paths. The reason is that, in such environments, ontology mappings have to be established 
between neighboring nodes.  Queries are forwarded and translated according to the mappings 
between neighbors. Therefore, query rewrites can come to the same nodes by different paths. Any 
two rewrites of the same query may differ from each other to any extent, from being identical to 
one containing the other, or having no containment relationship at all. Arbitrarily cutting flooding 
paths may lose some query rewrites thus causing result loss.  On the other hand, answering all 
variants of the query rewrites may not be necessary, because some rewrites may be the same, and 
some may be contained by others. Generating answers for redundant queries will produce redun-
dant results, which will strain the network and waste the bandwidth.  

In this section, we propose a comprehensive query routing and optimization scheme to address 
the aforementioned challenges of semantic query evaluation and enable efficient query evaluation. 



3.4.1 Motivation example 

In order to illustrate the problem, consider an example scenario based on Fig.4. This example 
illustrates a grid network consisting of universities and organizations sharing data and information 
resources. Mappings have been constructed between neighboring data sources. Nodes do not have 
complete knowledge of the grid but every node has a view of its neighbors’ ontology summary.  

Suppose a query QNDSU is posed over node NDSU, asking for information about universities’ re-
search personnel and publication. To get more results from the network, after checking its local 
dataset, node NDSU forwards the query to its neighbors.  It is obvious that NDSU should not for-
ward the query to City_Fargo, because its ontology is not related to the query. This can be deter-
mined by measure the semantic similarity (if the similarity is beyond a predefined the threshold). 
After excluding unrelated neighbors, the query will be forwarded to all related neighbors: DBLP 
and UBC. These two nodes will then use the ontology mappings with NDSU to reformulate the 
query QNDSU. Let us denote the resulting queries as QDBLP and QUBC. QDBLP and QUBC are then fur-
ther reformulated over UW, resulting in a pair of queries QUW and QUW'. Before reformulating any 
of these queries further, it is important to make sure that these two queries are not redundant with 
each other. A query is redundant with respect to another query if the query always returns a subset 
of the results of the other query. Reformulating a redundant query leads to wasted work. As a re-
sult, if either QUW or QUW' is redundant, the redundant query should be discarded without further 
processing.  
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 4. Example of a semantic grid for sharing semantic data. Each peer’s ontology is shown. 

From another aspect, there are two paths between NDSU and UW. Since DBLP does not model 
University (including student and professor) information, data about University in UW cannot be 
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used for answering a query on NDSU, if we use the path that goes through DBLP. In contrast, the 
path through UBC does enable that data flow. Therefore, finding the right semantic path is critical 
to query answering in the network. Based on this observation, we try to optimize the process by 
eliminating redundant queries as early/much as possible. In this paper, we focus on conjunctive 
SPARQL [25] queries formed by class and properties as well as projected variables. Other SQL-
Like queries can be processed similarly. 

3.4.2 Query evaluation process 

A query q is uniquely identified by its query ID (q.id) issued by the originator. It also includes the 
ID of the query originator (q.orininator) and the ID of the previous hop (q.lastHop) that passes the 
query to the current node, and the SPARQL query string (q.query).  When a node receives a query 
from a neighbor, it first tries to answer the query with its local data. Then it will measure the se-
mantic similarity between the query and the ontology summaries of its neighbors. Based on the 
similarity measure, the query will only be forwarded to neighbors that are semantically related to 
the query (i.e., the similarity value is beyond the predefined threshold t).  Before forwarding the 
query to a neighbor, the query will be reformulated to the neighbor’s ontology according to the 
ontology mapping.  The translated query q’ is called a rewriting of the originate query. The query 
reformulation algorithms have been extensively studied in [4, 13, 14]. Our system adopts the algo-
rithm in [14] which produces maximally contained rewritings.  We extend this algorithm to sup-
port semantic data defined with ontology by adding the ontological containment defined in the 
TBox, such as subsumption relationship of classes and properties, equivalent class and property, 
inverse and transitive property. 

The semantic similarity measure helps to reduce the query transmission cost by avoiding query 
be forwarded to unrelated nodes. However, there is still unnecessary query traffic due to the exis-
tence of multiple paths between nodes. As mentioned, we cannot prune the paths due to the seman-
tic heterogeneity. To solve this problem, we propose an efficient caching mechanism based on the 
semantic query containment checking. In this approach, each node maintains two caches: (1) ac-
tive_id_cache which stores the IDs of active queries (query’s Time to Live (TTL) is not expired 
yet), (2) query_cache that caches the best rewrites of all historically popular queries and their 
corresponding results. The algorithm of query processing with containment-based caching is illus-
trated with the pseudocode in Fig. 5. 

The original query ID is passed along the query reformulation paths together with the rewrites. 
Each node remembers the current active queries (in active_id_cache) and a set of best rewrites for a 
distinct original query (in query_cache). The evaluation of the new incoming query is based on the 
status of the query: if it is a new query or an existing active query, if it can be found in the 
query_cache, or it is contained by queries in the query_cache, or it contains or overlaps with que-
ries in the query_cache. The operations we take may vary from ignoring the query, returning 
cached results, processing and then returning the cached results, decomposing the query and 



evaluating the sub-queries, and evaluating the query from scratch. The detail of the evaluation is 
presented in Fig. 5. We can see that the query evaluation process is integrated with caching. Our 
later experiments will demonstrate that this query optimization strategy dramatically reduces the 
query traffic. 

query_processing (q) 
 { 
 if q can be found in active_id_cache, i.e., it is an active query 
  if q is in the query_cache or q is contained by a query in the query_cache  
   ignore the query, return 
  else if  q contains or overlaps with queries in the query_cache  
   determine if q should be decomposed, and decompose q accordingly 
 else 
  put q.id to active_id_cache 
  if q is in the query_cache 
   return the results cached 
  if q is contained by a query in the query cache then  
   get the result by using constraint on the cached result, return 
  else if  q contains or overlaps with queries in the query_cache  
   determine if q should be decomposed, and decompose q accordingly 
 find results from local dataset for query q(or q’s sub-queries) 
 forward q(or q’s sub-queries) to semantically related neighbors 
 put q into the query_cache, replacement policy may be used  

} 
Fig. 5. Optimized query evaluation 

3.5 Result collecting and cache management 

When returning results, our goal is to effectively integrate internal results and eliminate dupli-
cated results from different sources while preserving good response latency to query requestors. If 
a query request is successfully evaluated, the results will be passed back to the upstream requestor. 
A node, when receiving the results for a certain query rewrite q, would update its cache, so that 
future queries can take advantage of it. The newly discovered results are added into the corres-
ponding record of the resulting view cache.  The cache content is maintained by certain replace-
ment policies, taking the query frequency, temporal locality, evaluation cost and view sizes into 
consideration. The node also remembers quality routing paths, which is a determined by metrics 
such as the amount of results returned and the time used. The routing cache is updated dynamically 
according to the path quality, so that the system can forward the queries only to the best paths.  
Our simulations show that the network traffic can be dramatically reduced while preserving good 
response latencies for the query issuers. 



In addition, we propose a batch process scheme, in which, when a node receives a result, it does 
not transmit it immediately, but waits for a brief period to see whether it receives results for the 
same query again. If it does get multiple results from different paths, it will integrate the results 
and forward the intermediate results to its requesting neighbors.  Determining a suitable waiting 
period is complex: it needs to incorporate neighborhood knowledge and catching statistics.  

4  Experiment 

In this section, we will explain the experiment setup, and then present the simulation results. 

4.1. Setup 

As it is difficult to find representative real world ontology data, we have chosen to generate test 
data artificially. Our data does not claim to model real data, but shall rather provide reasonable 
approximation to evaluate the performance of the system. Ontology data can be characterized by 
many factors such as the number of classes, properties, and individuals; thus we have generated 
the test data in multiple steps. The algorithm starts with generating the ontology schema (TBox). 
Each schema includes the definition of a number of classes and properties. The classes and proper-
ties may form a multilevel hierarchy. Then the classes are instantiated by creating a number of 
individuals of the classes. To generate an RDF instance triple t, we first randomly choose an in-
stance of a class C among the classes to be the subject: sub(t). A property p of C is chosen as the 
predicate pre(t), and a value from the range of p to be the object: obj(t). If the range of the selected 
property p are instances of a class C’, then obj(t) is a resource; otherwise, it is a literal.  

The queries are generated by randomly replacing parts of the created triples with variables. For 
our experiments, we use single-triple-queries and conjunctive-triple-queries. To create the con-
junctive-queries, we randomly choose a property p1 of class C1. Property p1 leads us to a class C2 
which is the range of p1. Then we randomly choose a property p2 of class C2. This procedure is 
repeated until the range or the property is a literal value or we have created n (n≤3) triple patterns.   

To control the ontology heterogeneity, we use a small-sized vocabulary set to generate the on-
tology data; we fix the mapping relation to the equivalentClass relation and ignore all other map-
ping relations. We do not do knowledge reasoning. In other words, we do not augment the RDF 
graph by inference (forward chaining). The total number of distinguished ontology schema is 20. 
We assume each node uses 1 to 3 ontologies. Each ontology includes at most 10 classes. The num-
ber of properties that each class has is at most k=3. The number of instances of each class at each 
peer is less than 10. Finally, the number of triple patterns in each query we create is either 1 or 3.  

The simulation is initialized by injecting nodes one by one into the network until a certain net-
work size has been reached (default network size is 1000). The network topology created this way 



has power-law properties; nodes inserted earlier have more links than those inserted later. This 
property is consistent with the real world situation, in which nodes with longer session time have 
more neighbors. After the initial topology is created, a mixture of joins, leaves, and queries are 
injected into the network based on certain ratios. We can adjust the query intensity by changing the 
ratio of query to join and leave (i.e., churn). In a query intensive system, the query frequency is 
higher. For example, in our experiment, at any time, the possibility of a node to issue a query is 20% 
and the possibility of a node to change its status (from on to off or vice versa) is 2% which 
represents a dynamic and query intensive scenario. For example, in a network with 1000 nodes, at 
any given time, there are on average 200 queries issued and 40 nodes change their status. The 
proportion of join to leave operations is kept the same to maintain the network at approximately 
the same size. Inserted nodes start functioning without any prior knowledge. 

4.2. Result 

As discussed, the topology of the network is a crucial factor determining the efficiency of the 
query system. We start the evaluation of the query evaluation system by first recording the effec-
tiveness of our semantics-based topology adaptation algorithm. We compare the query perfor-
mance of a semantics-based topology with that of a semantics-free random topology. The perfor-
mance measurement is based on the metric of recall rate which is defined as the number of results 
returned divided by the number of results actually available in the network.  

Fig. 6 depicts the findings of our first set of simulations. As it can be seen, query evaluation 
based on our adapted topology performs better as measured by recall rate. Semantics-based topol-
ogy effectively reduces the search space, and its ontology summary guides the query in the right 
direction. Therefore, the query system can locate results faster and more accurately with this to-
pology. This explains why our topology scales to large network size and why it achieves higher 
recall with smaller TTL. Besides all these reasons, another factor contributing the overall better 
recall rate of our topology is that it is able to locate semantically related results that cannot be 
located by the random topology. Because of the semantic heterogeneity of our experimental setup, 
relevant resources may be represented with different ontologies. System based on the semantic 
topology may use its ontology summary to find semantically related nodes and use the mapping 
defined to translate the query. Therefore, it can locate most of the relevant results. However, for 
unstructured random topology, they have no way to find semantically related resources. Therefore, 
they can only locate resources represented in the same ontology as the ontology of the querying 
node. 

Simulations also were carried out to validate and characterize the performance of the proposed 
query routing scheme. First, we demonstrate the performance of our semantics-based greedy query 
forwarding strategy by comparing it with semantics-free query forwarding scheme. In this experi-
ment, we vary the average number of ontology schemas a node can pick, and then we evaluate the 
bandwidth of solving all the queries. As shown in Fig. 7, our semantics-based query forwarding 



reduces the bandwidth dramatically, especially when the grid is more semantically heterogeneous. 
This is because we only forward the query to related neighbors, thus saving unnecessary traffic. 

 

 
(a) Comparison of query efficiency (recall vs. TTL) 

 

 
(b) Comparison of system scalability (recall vs. network size) 

Fig.6. Effect of topology adaptation on query performance. 

 

 
 

 Fig.7. Comparison of query overhead (accumulated bandwidth vs. # of ontology schema per node) 

Moreover, we show that our containment-based caching improves the query performance by re-
ducing not only query traffic but also query latency. Fig. 8 and Fig. 9 demonstrate these two as-
pects respectively. In this experiment, we increase the skew degree of the query distribution from 
random to Zipf [33] with α=1.25. From Fig. 8 and Fig. 9 we can get two conclusions: (1) Caching, 
especially containment-based caching significantly reduces the query traffic and query latency. (2) 
Query distribution has a significant impact on the performance of caching. The more skewed the 
query distribution, the more effective the caching performs. According to [2], in an open and live 
distributed environment, query distribution is skewed and follows a Zipf distribution. Therefore, 
our caching scheme would be an effective strategy to improve the system performance. 
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Fig.8. Performance of caching (accumulated bandwidth vs. query distribution) 

 
 

 
Fig.9. Performance of caching (query latency vs. query distribution) 

 
 

 
(a) Query overhead vs. waiting period 

 

 
(b) Query latency vs. waiting period 

Fig.10. Effect of batch query collecting 
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Finally, we evaluate the performance of the batch processing scheme on result collecting. From 
Fig. 10, we can see that adding a waiting period for result collecting does reduce the result collect-
ing overhead; however, on the other hand, it increases the response time. An application should 
choose an appropriate waiting period according to its special need. 

5  Conclusions 

The main contribution of this paper is to present a bandwidth-efficient framework for query 
evaluation in a large-scale and fully decentralized heterogeneous grid network. In this framework, 
we organize nodes’ topology according to their semantic distances, so that queries can be focused 
in semantically related regions only. To reduce redundant queries and results from different se-
mantic paths, a view-based semantic caching mechanism is proposed. Query results and routes are 
cached for future use. Semantic containment and rewriting are introduced to match semantically 
similar queries with cached views. Our simulation results show that these optimization techniques 
dramatically reduce bandwidth cost and improve query response time. 

Important problems in large-scale distributed query evaluation remain to be solved. We identify 
several limitations of our work and research directions for future work. First, the overhead of con-
structing the semantics-based topology is relatively high. It involves searching the WordNet dic-
tionary. If the users’ devices have limited computing capacity or power, this overhead can be pro-
hibitively high. Therefore, one important issue we are going to address is to further simplify the 
semantic similarity measure to minimize the computation cost. Moreover, we are going to improve 
the query evaluation process by integrating indexing and caching prediction. Furthermore, in the 
current system, query results are returned to requesters without using any ranking mechanisms. We 
plan to investigate the result-ranking problem, so that query results can be ordered based on rele-
vance and importance for users.  
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