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Abstract 

This paper presents a new approach to grid 
resource discovery by using semantic peer-to-peer 
(P2P) overlays. The framework is based on the RDF 
metadata infrastructure, allowing a rich and extensible 
description of resources and queries. To avoid 
flooding the network with a query, we propose a 
comprehensive semantics-based query forwarding 
strategy, which only forwards queries to semantically 
related nodes. After the related nodes have been 
located, the original RDF query is used to do the final 
query and retrieval. Results from simulation 
experiments demonstrate that this architecture is 
scalable and efficient. 

1. Introduction 

With the growing volume of information and 
resources stored in Grids, it is becoming increasingly 
difficult to search for desired resources in Grids.  

Traditionally, resource discovery in Grids is based 
mainly on centralized or hierarchical models. For 
example, in the Globus Toolkit [4], users can get a 
node’s resource information by directly querying a 
server application running on that node, or querying 
dedicated information servers that retrieve and publish 
the organization’s resource information. Although 
interactions between these information servers are 
supported, the general-purpose decentralized service 
discovery mechanism is still absent.  

To discover resources in more dynamic, large-scale, 
and distributed environments, P2P techniques have 
been used in Grids. For example, [14] and [16] use 
different P2P architectures for Grid information service. 
However, P2P technology brings new problems: The 
flooding-based unstructured P2P systems do not scale 
well in terms of message overhead. Random walks [7, 
13], an alternative to flooding, can reduce the amount 
of network traffic, but it is at the cost of query latency. 
DHT-based systems [9–12] have been shown to be 

scalable and efficient. However, a missing feature is the 
inherent support for complex queries. Another hurdle 
to DHT deployment is its tight control of both data 
placement and network topology.  

In this paper, we propose a semantics-based P2P 
model for grid resource discovery. It uses RDF [2, 5] to 
represent both resources and queries. In the framework, 
resource providers register their resource information 
to local information nodes. Information nodes connect 
with each other, forming a P2P overlay. Resource 
searching is carried out only on top of this P2P overlay. 
To support complex RDF queries without flooding the 
whole network, our system uses a Resource Distance 
Vector (RDV) routing algorithm. The basic idea is to 
extract the building blocks from RDF metadata and 
then summarize them to form a compact structure. 
Based on this summarization, we create a routing table 
to guide the query forwarding. When compared to 
unstructured P2P applications oblivious of the resource 
location, this routing strategy reduces both the query 
overhead and query latency, and guarantees a higher 
query hit ratio. Compared with DHTs, our approach 
inherently supports rich queries, and requires no 
explicit control over the network topology or data 
placement. 

2. Resource representation and queries 

Metadata plays an important role for complex 
queries that go beyond string matching. We use an 
RDF metadata representation to encode resources. The 
RDF metadata index not only provides improved query 
capabilities, but also supports more sophisticated query 
routing. Every peer maintains a resource index table, 
and peers exchange their indices. Queries can then be 
distributed by relaying based on these indices. 
However, exchanging RDF indices between nodes is 
almost impossible because each node may maintain a 
large number of resources. To reduce the overhead of 
propagating the index information, we must make the 
indices lightweight. Our strategy is to extract the 
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building block of the RDF metadata (subject, predicate, 
object) and then summarize them in a compact 
structure: a triple filter. A triple filter includes three 
Bloom filters: the subject filter, the predicate filter, and 
the object filter. An RDF triple can be hashed to these 
three filters. Every node maintains a local triple filter 
and several aggregated neighbor triple filters. These 
filters form a routing table that directs query 
forwarding. Section 3.1 presents the creation and 
maintenance of this routing table. 

We use RDQL [15] to query the metadata. We 
convert an RDQL query to a triple sequence and then 
match the triple sequence by the triple filters to 
determine where to forward the query. If the query can 
pass a node’s filters, then it will be forwarded to that 
node. This filtering technique limits query routing 
traffic by forwarding queries only to a small number of 
related nodes. However, it cannot guarantee that the 
query can be answered through the forwarding path 
because the matched elements may belong to different 
resources. Matching the triple sequence with the filters 
relaxes the constraints of the original query. 
Nevertheless, an advantage of this scheme is that the 
filter can introduce only false positives but never false 
negatives – the correct nodes will not be excluded. 
Strict accuracy is not necessary for the routing process, 
since the local RDF database is checked by the original 
query in the end. The resource summarization works 
only as a hint for forwarding the query to related nodes. 

3. Overlay routing 

We propose a so-called resource-distance-vector 
(RDV) routing algorithm. It uses a distance vector 
approach to route the query to the nearest matching 
nodes. Every peer in the overlay network maintains a 
resource index table. This table uses the triple filters 
we mentioned above, and includes distance (in number 
of hops) information. Peers exchange the resource 
indices with their neighbors, and update relevant 
entries in their table. The distance information is 
updated whenever passing through a node. To reduce 
false positives brought by the result of resource 
information aggregation, we set a hop count limit, 
which we call radius, to limit the number of hops the 
resource information can travel. When a node receives 
a query request, the algorithm chooses the shortest 
route to forward the query. Therefore, if there is more 
than one provider supplying the same resource, then 
with high probability, the algorithm will forward the 
request to the nearest one. In addition, a “heuristic 
jump” method is used to expedite the searching process 
by skipping over the “barren” areas. 

3.1. Routing table 

As mentioned, each node maintains a RDV routing 
table (RDVT). The RDVT contains both local and 
neighbor triple filters. Besides resource information, 
the triple filters also record the distance to the resource. 
Figure 1 shows part of the network with the associated 
RDVT for each node. For brevity, only one of the three 
filters is shown here. Each element in the filter is 
associated with a distance number: the minimum 
distance to a matching resource. The first row of the 
RDVT is the local filter containing local resource index. 
For example, node A’s local filter contains a local 
resource a, which is mapped to two positions (2, 4) in 
the filter. We set the distance number of a local 
resource as 0. The rest of the rows represent resources 
accessible from neighbors. For example, A’s second 
row contains resources that can be reached through the 
neighbor B (e.g., resource b(4,0) with 1 hop). 

(a)

(b)
Figure 1. Maintaining routing indices 

Figure 1 also illustrates the RDVT update process 
when a new node C joins the network. Node C joins the 
network by connecting to an existing node A in the 
network. After the connection is established, node C
sends its resource indices to A. Similarly, A informs C
of all the resources A has knowledge of. Specifically, A
merges its local and neighbor vectors to one vector and 
sends it to C. The aggregation is done by comparing 
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every element of the vectors, and selecting their 
minimum value. The merged vector of A represents 
resources accessible from A and their shortest distances 
to A. After C receives the merged vector from A, it 
adds 1 hop to each element of the vector, and adds an 
additional row in its RDVT (as shown in Figure 1(b)). 
After A receives C’s resource information and updates 
its routing table, it informs its neighbors (in this case, 
node B) of the update. In the merged vector, if an 
element’s value equals radius, we reset the value to 
infinity (“~” in the figure), representing “not 
available.” 

Each node sends updates to and receives updates 
from its directly connected neighbors. Eventually the 
table stabilizes, and all resources within the range 
determined by radius are known. Nodes need to 
periodically “ping” their neighbors to make sure that 
they are still alive. To reduce the overhead of 
transmitting routing information, a soft-state update 
mechanism is used, in which routing information is 
exchanged periodically. At any given time, the resource 
routing information may potentially be stale or 
inconsistent, but as mentioned, this approximation will 
not affect the system’s fidelity. 

3.2. Query forwarding  

Figure 2 illustrates a query routing example. In this 
example, the radius is set to 3, so nodes are only aware 
of resources within 3 hops. Node A receives a query for 
resource e, which is mapped to two positions: 3 and 6
in the filter. It checks its routing table and finds two 
matches: through C with 2 hops (C3=2, C6=2) and 
through D with 3 hops (D3=3, D6=3). So the shortest 
distance to the resource is 2 through neighbor C.
Therefore, the query is forwarded to C. Similarly, C
forwards the query to E. E finds a match in its local 
vector, and then it checks the RDF database with the 
original RDQL query.  

Figure 2. Query routing 

Our routing algorithm works fine with networks 
containing cycles. Because of cycles, a node may 
receive a query multiple times. To avoid processing 
queries more than once, every query has a unique query 
ID and every node keeps a list of recently received 
query IDs. If a query has been received before, it will 
be discarded. 

3.3. Heuristic jump and caching 

By setting a radius, we limit the distance a node’s 
resource information can travel. This reduces false 
positives, but at the same time, a node does not have 
global knowledge of the network but only a local view 
of the neighborhood. Because of this, a node may not 
find enough matches from its RDVT to forward queries. 
To address this problem, we introduce a forwarding 
method called “heuristic jump.” 

This method allows the system to keep additional 
long-distance links as an addendum to the RDVT. 
When the RDVT cannot resolve the query, the query 
will “jump” to remote nodes the links point to. To 
discover those long-distance links, the system employs 
an aggressive caching technique. After finding the 
result of a query, the result travels along the reverse 
path to the requester. Whenever it is passed through a 
node, it is cached in that location. Every internal node 
caches the query, the destination node, and the distance 
to that node. During the query-forwarding process, 
when a node cannot find enough matches in its routing 
table, it chooses appropriate long-distance links from 
its cache and forwards the query accordingly. This 
expedites the searching process by jumping over barren 
areas. Candidate long-distance nodes should be located 
outside the neighborhood area; i.e., the distance should 
be greater than radius.

4. Experiments 

Via simulations, we compared the performance of 
our routing algorithm with Simple Random Walk 
(SRW) and Advanced Random Walk (ARW). SRW 
randomly chooses neighbors to forward queries. ARW 
forwards to nodes according to past experience. We 
deploy 5 walkers for these three routing algorithms. 

Figures 3 and 4 compare the three routing 
algorithms in terms of query recall rate and query hop 
consumption. As expected, our RDV routing algorithm 
outperforms either SRW or ARW on both metrics. 
Compared with Random Walks, RDV always forwards 
the query to the right direction, so it can find more 
results and thus enjoy a higher recall. In addition, 
RDVT records the resource distance information, so it 
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can forward queries to the nearest resource providers. 
That’s why RDV needs fewer hops to resolve a query. 
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Figure 4. Hops versus network size 

5. Related work 

Many recent P2P searching techniques relate to our 
research. Due to space limitation, we list only some of 
the most relevant ones: Edutella [3] and RDFPeers [6] 
have used RDF to represent resources and queries. 
Bloom filters have been used as a succinct summary 
technique for query filtering and routing. For example, 
OceanStore [17] uses attenuated Bloom filters to store 
objects information. PlanetP [8] also uses Bloom filters 
to distribute a summary of the contents of each peer. 
Paper [1] discusses routing indices based on the 
various aggregation strategies of content indices. 

6. Conclusion 

As more and more resources appear in Grids, there 
is a compelling need to find an effective and efficient 
way to discover and query these resources. In this 
paper, we present a novel design for resource discovery 
in large-scale Grids. The system is based on the P2P 
model and provides a complex query interface. It 
supports rich resource descriptions and complex 
queries by encoding resources and queries with RDF. 
To avoid flooding queries to irrelevant nodes, a 
semantics-based routing scheme is proposed to route 
queries only to related nodes. This system has been 
evaluated by a group of simulations, which show that 
the proposed routing schemes are both efficient and 
scalable. 
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