
Semantic Overlay Network for Grid Resource Discovery

Juan Li, Son Vuong
Computer Science Department, University of British Columbia

{juanli, vuong}@cs.ubc.ca

Abstract

This paper presents a new approach to grid
resource discovery by using semantic peer-to-peer
(P2P) overlays. The framework is based on the RDF
metadata infrastructure, allowing a rich and extensible
description of resources and queries. To avoid
flooding the network with a query, we propose a
comprehensive semantics-based query forwarding
strategy, which only forwards queries to semantically
related nodes. After the related nodes have been
located, the original RDF query is used to do the final
query and retrieval. Results from simulation
experiments demonstrate that this architecture is
scalable and efficient.

1. Introduction

With the growing volume of information and
resources stored in Grids, it is becoming increasingly
difficult to search for desired resources in Grids.

Traditionally, resource discovery in Grids is based
mainly on centralized or hierarchical models. For
example, in the Globus Toolkit [4], users can get a
node’s resource information by directly querying a
server application running on that node, or querying
dedicated information servers that retrieve and publish
the organization’s resource information. Although
interactions between these information servers are
supported, the general-purpose decentralized service
discovery mechanism is still absent.

To discover resources in more dynamic, large-scale,
and distributed environments, P2P techniques have
been used in Grids. For example, [14] and [16] use
different P2P architectures for Grid information service.
However, P2P technology brings new problems: The
flooding-based unstructured P2P systems do not scale
well in terms of message overhead. Random walks [7,
13], an alternative to flooding, can reduce the amount
of network traffic, but it is at the cost of query latency.
DHT-based systems [9–12] have been shown to be

scalable and efficient. However, a missing feature is the
inherent support for complex queries. Another hurdle
to DHT deployment is its tight control of both data
placement and network topology.

In this paper, we propose a semantics-based P2P
model for grid resource discovery. It uses RDF [2, 5] to
represent both resources and queries. In the framework,
resource providers register their resource information
to local information nodes. Information nodes connect
with each other, forming a P2P overlay. Resource
searching is carried out only on top of this P2P overlay.
To support complex RDF queries without flooding the
whole network, our system uses a Resource Distance
Vector (RDV) routing algorithm. The basic idea is to
extract the building blocks from RDF metadata and
then summarize them to form a compact structure.
Based on this summarization, we create a routing table
to guide the query forwarding. When compared to
unstructured P2P applications oblivious of the resource
location, this routing strategy reduces both the query
overhead and query latency, and guarantees a higher
query hit ratio. Compared with DHTs, our approach
inherently supports rich queries, and requires no
explicit control over the network topology or data
placement.

2. Resource representation and queries

Metadata plays an important role for complex
queries that go beyond string matching. We use an
RDF metadata representation to encode resources. The
RDF metadata index not only provides improved query
capabilities, but also supports more sophisticated query
routing. Every peer maintains a resource index table,
and peers exchange their indices. Queries can then be
distributed by relaying based on these indices.
However, exchanging RDF indices between nodes is
almost impossible because each node may maintain a
large number of resources. To reduce the overhead of
propagating the index information, we must make the
indices lightweight. Our strategy is to extract the

Grid Computing Workshop 20050-7803-9493-3/05/$20.00 2005 IEEE 288

building block of the RDF metadata (subject, predicate,
object) and then summarize them in a compact
structure: a triple filter. A triple filter includes three
Bloom filters: the subject filter, the predicate filter, and
the object filter. An RDF triple can be hashed to these
three filters. Every node maintains a local triple filter
and several aggregated neighbor triple filters. These
filters form a routing table that directs query
forwarding. Section 3.1 presents the creation and
maintenance of this routing table.

We use RDQL [15] to query the metadata. We
convert an RDQL query to a triple sequence and then
match the triple sequence by the triple filters to
determine where to forward the query. If the query can
pass a node’s filters, then it will be forwarded to that
node. This filtering technique limits query routing
traffic by forwarding queries only to a small number of
related nodes. However, it cannot guarantee that the
query can be answered through the forwarding path
because the matched elements may belong to different
resources. Matching the triple sequence with the filters
relaxes the constraints of the original query.
Nevertheless, an advantage of this scheme is that the
filter can introduce only false positives but never false
negatives – the correct nodes will not be excluded.
Strict accuracy is not necessary for the routing process,
since the local RDF database is checked by the original
query in the end. The resource summarization works
only as a hint for forwarding the query to related nodes.

3. Overlay routing

We propose a so-called resource-distance-vector
(RDV) routing algorithm. It uses a distance vector
approach to route the query to the nearest matching
nodes. Every peer in the overlay network maintains a
resource index table. This table uses the triple filters
we mentioned above, and includes distance (in number
of hops) information. Peers exchange the resource
indices with their neighbors, and update relevant
entries in their table. The distance information is
updated whenever passing through a node. To reduce
false positives brought by the result of resource
information aggregation, we set a hop count limit,
which we call radius, to limit the number of hops the
resource information can travel. When a node receives
a query request, the algorithm chooses the shortest
route to forward the query. Therefore, if there is more
than one provider supplying the same resource, then
with high probability, the algorithm will forward the
request to the nearest one. In addition, a “heuristic
jump” method is used to expedite the searching process
by skipping over the “barren” areas.

3.1. Routing table

As mentioned, each node maintains a RDV routing
table (RDVT). The RDVT contains both local and
neighbor triple filters. Besides resource information,
the triple filters also record the distance to the resource.
Figure 1 shows part of the network with the associated
RDVT for each node. For brevity, only one of the three
filters is shown here. Each element in the filter is
associated with a distance number: the minimum
distance to a matching resource. The first row of the
RDVT is the local filter containing local resource index.
For example, node A’s local filter contains a local
resource a, which is mapped to two positions (2, 4) in
the filter. We set the distance number of a local
resource as 0. The rest of the rows represent resources
accessible from neighbors. For example, A’s second
row contains resources that can be reached through the
neighbor B (e.g., resource b(4,0) with 1 hop).

(a)

(b)
Figure 1. Maintaining routing indices

Figure 1 also illustrates the RDVT update process
when a new node C joins the network. Node C joins the
network by connecting to an existing node A in the
network. After the connection is established, node C
sends its resource indices to A. Similarly, A informs C
of all the resources A has knowledge of. Specifically, A
merges its local and neighbor vectors to one vector and
sends it to C. The aggregation is done by comparing

289

every element of the vectors, and selecting their
minimum value. The merged vector of A represents
resources accessible from A and their shortest distances
to A. After C receives the merged vector from A, it
adds 1 hop to each element of the vector, and adds an
additional row in its RDVT (as shown in Figure 1(b)).
After A receives C’s resource information and updates
its routing table, it informs its neighbors (in this case,
node B) of the update. In the merged vector, if an
element’s value equals radius, we reset the value to
infinity (“~” in the figure), representing “not
available.”

Each node sends updates to and receives updates
from its directly connected neighbors. Eventually the
table stabilizes, and all resources within the range
determined by radius are known. Nodes need to
periodically “ping” their neighbors to make sure that
they are still alive. To reduce the overhead of
transmitting routing information, a soft-state update
mechanism is used, in which routing information is
exchanged periodically. At any given time, the resource
routing information may potentially be stale or
inconsistent, but as mentioned, this approximation will
not affect the system’s fidelity.

3.2. Query forwarding

Figure 2 illustrates a query routing example. In this
example, the radius is set to 3, so nodes are only aware
of resources within 3 hops. Node A receives a query for
resource e, which is mapped to two positions: 3 and 6
in the filter. It checks its routing table and finds two
matches: through C with 2 hops (C3=2, C6=2) and
through D with 3 hops (D3=3, D6=3). So the shortest
distance to the resource is 2 through neighbor C.
Therefore, the query is forwarded to C. Similarly, C
forwards the query to E. E finds a match in its local
vector, and then it checks the RDF database with the
original RDQL query.

Figure 2. Query routing

Our routing algorithm works fine with networks
containing cycles. Because of cycles, a node may
receive a query multiple times. To avoid processing
queries more than once, every query has a unique query
ID and every node keeps a list of recently received
query IDs. If a query has been received before, it will
be discarded.

3.3. Heuristic jump and caching

By setting a radius, we limit the distance a node’s
resource information can travel. This reduces false
positives, but at the same time, a node does not have
global knowledge of the network but only a local view
of the neighborhood. Because of this, a node may not
find enough matches from its RDVT to forward queries.
To address this problem, we introduce a forwarding
method called “heuristic jump.”

This method allows the system to keep additional
long-distance links as an addendum to the RDVT.
When the RDVT cannot resolve the query, the query
will “jump” to remote nodes the links point to. To
discover those long-distance links, the system employs
an aggressive caching technique. After finding the
result of a query, the result travels along the reverse
path to the requester. Whenever it is passed through a
node, it is cached in that location. Every internal node
caches the query, the destination node, and the distance
to that node. During the query-forwarding process,
when a node cannot find enough matches in its routing
table, it chooses appropriate long-distance links from
its cache and forwards the query accordingly. This
expedites the searching process by jumping over barren
areas. Candidate long-distance nodes should be located
outside the neighborhood area; i.e., the distance should
be greater than radius.

4. Experiments

Via simulations, we compared the performance of
our routing algorithm with Simple Random Walk
(SRW) and Advanced Random Walk (ARW). SRW
randomly chooses neighbors to forward queries. ARW
forwards to nodes according to past experience. We
deploy 5 walkers for these three routing algorithms.

Figures 3 and 4 compare the three routing
algorithms in terms of query recall rate and query hop
consumption. As expected, our RDV routing algorithm
outperforms either SRW or ARW on both metrics.
Compared with Random Walks, RDV always forwards
the query to the right direction, so it can find more
results and thus enjoy a higher recall. In addition,
RDVT records the resource distance information, so it

290

can forward queries to the nearest resource providers.
That’s why RDV needs fewer hops to resolve a query.

0%
20%
40%
60%
80%

100%

500

1000

1500

2000

2500

3000

re
ca

ll
RDV
ARW
SRW

Figure 3. Recall versus network size

0
10
20
30
40
50

500 1000 1500 2000 2500 3000av
g

ho
ps

 p
er

 q
ue

ry RDV
ARW
SRW

Figure 4. Hops versus network size

5. Related work

Many recent P2P searching techniques relate to our
research. Due to space limitation, we list only some of
the most relevant ones: Edutella [3] and RDFPeers [6]
have used RDF to represent resources and queries.
Bloom filters have been used as a succinct summary
technique for query filtering and routing. For example,
OceanStore [17] uses attenuated Bloom filters to store
objects information. PlanetP [8] also uses Bloom filters
to distribute a summary of the contents of each peer.
Paper [1] discusses routing indices based on the
various aggregation strategies of content indices.

6. Conclusion

As more and more resources appear in Grids, there
is a compelling need to find an effective and efficient
way to discover and query these resources. In this
paper, we present a novel design for resource discovery
in large-scale Grids. The system is based on the P2P
model and provides a complex query interface. It
supports rich resource descriptions and complex
queries by encoding resources and queries with RDF.
To avoid flooding queries to irrelevant nodes, a
semantics-based routing scheme is proposed to route
queries only to related nodes. This system has been
evaluated by a group of simulations, which show that
the proposed routing schemes are both efficient and
scalable.

7. References

[1] A. Crespo and H. Garcia-Molina. “Routing indices for
peer-to-peer systems.” In Proceedings International
Conference on Distributed Computing Systems, July 2002.
[2] Ora Lassila and Ralph R. Swick, “W3C Resource
Description framework (RDF) Model and Syntax
Specification.”
[3] W. Nejdl, M. Wolpers, W. Siberski, A. Loser, I.
Bruckhorst, M. Schlosser, and C. Schmitz. “Super-Peer-
Based Routing and Clustering Strategies for RDF-Based
Peer-To-Peer Networks.” In Proceedings of the Twelfth
International World Wide Web Conference (WWW2003),
Budapest, Hungary, May 2003.
[4] Globus Toolkit: http://www.globus.org/toolkit/
[5] Dan Brickley and R.V.Guha. “W3C Resource
Description Framework (RDF) Schema Specification.”
http://www.w3.org/TR/1998/WD-rdf-schema/
[6] M. Cai and M. Frank. RDFPeers: “A Scalable Distributed
RDF Repository based on A Structured Peer-to-Peer
Network.” In International World Wide Web Conference
(WWW), 2004.
[7] Lv, C., Cao, P., Cohen, E., Li, K., Shenker, S. “Search
and replication in unstructured peer-to-peer networks.” In:
ACM, SIGMETRICS 2002.
[8] F. M. Cuenca-Acuna, C. Peery,R. P. Martin, andT. D.
Nguyen. “PlanetP: Infrastructure Support for P2P
Information Sharing,” Technical Report Department of
Computer Science, Rutgers University, Nov. 2001.
[10] A. Rowstron and P. Druschel. “Pastry: Scalable,
Distributed Object Location and Routing for Large-Scale
Peer-to-Peer Systems,” Proceedings of the IFIP/ACM
International Conference on Distributed Systems Platforms,
Middleware, November 2001.
[11] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H.Balakrishnan. “Chord: A Scalable Peer-to-Peer Lookup
Service for Internet Applications,” ACM SIGCOMM, 2001
[12] S. Ratnasamy, P.Francis, M.Handley, R.Karp, and S.
Shenker. “A Scalable Content-Addressable Network,” ACM
SIGCOMM, August 2001
[13] Adamic, L., Huberman, B., Lukose, R., Puniyani, A.:
“Search in power law networks.” Physical Review (2001)
[14] M. Cai, M. Frank, J. Chen and P. Szekely, “MAAN: A
Multi-Attribute Addressable Network for Grid Information
Services.” The 4th International Workshop on Grid
Computing, 2003.
[15] A. Seaborne. “RDQL: A Data Oriented Query Language
for RDF Models.”
www-uk.hpl.hp.com/people/afs/RDQL/, 2001.
[16] Iamnitchi A, Foster I, “On Fully Decentralized

Resource Discovery in Grid Environments,” Proc. The 2nd
IEEE/ACM International Workshop on Grid Computing
2001, Denver, November 2001.
 [17] S. C. Rhea and J. Kubiatowicz, “Probabilistic location
and routing,” in Proc. INFOCOM, vol. 3, New York, NY,
June 2002, pp. 1248–1257.

291

