
OntSum: A Semantic Query Routing Scheme in P2P Networks Based on
Concise Ontology Indexing

Juan Li, Son Vuong
Computer Science Department, University of British Columbia

{juanli, vuong}@cs.ubc.ca

Abstract

Locating desirable resources is very important for a

large distributed system. However, the distributed,
heterogeneous, and unstructured nature of the system
makes this issue very challenging. The discovering
mechanism has to be not only semantically rich, in
order to cope with complex queries, but also scalable
to handle large numbers of information sources. In this
paper, we address these problems by proposing
OntSum, an efficient peer-to-peer query routing
scheme based on concise ontology indexing. Unlike
most existing systems, our system does not assume a
global ontology but heterogeneous ontologies. Peers in
the system use their own ontologies to describe their
resource knowledge and the network topology is
adjusted according to peers’ ontological properties. A
novel indexing strategy enables forwarding queries
only to semantically related nodes. The architecture
improves interoperability among network participants
and aids efficient resource discovery through an
expressive query language.

1. Introduction

With the rapid growth of online data, discovering
the desirable information from the vast amount of
sources has become a central issue to be addressed.
Peer-to-peer (P2P) technology has been used as a
solution to this problem, since it scales to very large
networks, while ensuring high autonomy and fault-
tolerance. However, existing P2P systems offer few
data management facilities, limited to IR(Information
Retrieval) -style keyword search. Keyword search is
appropriate for simple file-sharing applications, but it
is unable to deal with discovery of complex resources
which have various properties and sophisticated
relations with each other.

Recent schema-based P2P systems [1, 2, 3] go
beyond file-sharing, by providing infrastructures where
peers can create and share knowledge. Most existing

schema-based P2P systems are built on top of
unstructured networks, and often use flooding or
maintain a broadcast structure such as a tree or a super
cube for searching. For example, to execute an RDF
query, Edutella [3] broadcasts the query to the whole
hypercube. More recently, a few studies [4, 5, 6]
extended the DHT to support complex queries. The
basic idea is to map each keyword in a complex query
to a key. A query with multiple keywords then uses the
DHT to lookup each keyword and returns the
intersection. In order to do this intersection, however,
large amounts of data have to be transferred from one
peer to another, thus creating large traffic load [7].
Systems like [8] avoid this multiple lookup and
intersection by storing a complete keyword list of an
object on each node. This approach may incur a huge
overhead on publishing and storing the keywords.
Another problem of DHT approaches is that most of
them assume a uniform ontology .

In this paper, we address the routing issues of
expressive queries in a large distributed environment
by an ontology-based P2P approach. Peers in our
system advertise local resources using ontological
descriptions. We do not assume peers use a global
ontological schema; instead, ontologies are allowed to
differ between users. The network topology is
reconfigured with respect to peers’ ontological
similarity, so that peers with similar ontologies are
close to each other. An effective and efficient lookup
service is built on top of a concise ontology indexing,
such that queries can be forwarded only to those peers
containing resources that satisfy the query constraints.
Results from simulation experiments demonstrate that
this routing scheme is scalable and efficient.

2. Peer ontology

Before they can discover resources efficiently, peers

have to construct their ontological knowledge of the
resources. With this knowledge, peers can describe
their resources expressively, pose rich queries, and

21st International Conference on Advanced Networking and Applications(AINA'07)
0-7695-2846-5/07 $20.00 © 2007

route queries intelligently. In this section, we specify
how nodes construct their ontology knowledge in
detail.

2.1. Local ontology repository

Peers describe their resource knowledge with
ontologies. The knowledge sharing and discovering are
based on the ontological descriptions. As in common
DL (Description Logic) systems [26], our system
divides the ontology knowledge into two parts: the
taxonomical box (T-Box) and the assertion box (A-
Box). The T-Box stores conceptual knowledge and
can be compared to the schema of a database system.
It is created by defining concepts and relationships
between concepts. The A-Box represents the concrete
knowledge about individuals. A node also uses
inference engines to derive additional facts from
existing knowledge. Our inter-cluster routing and intra-
cluster routing, both will be explained later, are based
on the T-Box and A-Box indexing respectively.

2.2. Peer semantic similarity

To organize peers according to their semantic
properties, we need a metric to measure peers’
ontology similarity. There have been extensive
researches ([28], [29], [30]) focusing on measuring the
semantic similarity between two objects in the field of
information retrieval and information integration. In
this paper, we will use a very simple method to
compute the semantic similarity function between two
peers; this can easily be replaced with other advanced
functions for a complex system.

In the current system, a node’s T-Box concepts are
indexed into a vector which is called this node’s
ontological signature vector. This vector is extended
by adding new concepts which are semantically related
to the original concepts. For example, we can exploit a
pre-defined thesaurus like WordNet [31] or knowledge
learned from the network. Assume A and B are two
peers, and their signature vectors are V(A) and V(B)
respectively. The semantic similarity between peer A
and peer B is defined as:

|)(|
|)()(|),(

AV
BVAVBAsim ∩= (1)

In (1), ∩ denotes set intersection, while | | represents
set cardinality. This definition is based on the idea that
ontologies which share more common concepts are
more similar than those sharing less common concepts.
Note that with this definition, similarity is not a
symmetric relation (i.e.: sim(A,B) ≠ sim(B,A)). Peers
become semantically related to a peer if their similarity

is beyond a specified similarity threshold: t (0<t<1),
which can be determined locally by the peer.

2.3. Ontology mapping

As mentioned, it is infeasible to expect a standard
uniform ontology inside a large network; instead,
different peers are allowed to use different ontologies.
When a query is forwarded to a peer, even if the peer is
semantically related to the query, it may not know all
terms used in the query expression, because they are
taken from the local ontology of the asking peer. In
order to overcome this problem, we have to align the
ontologies of the asking and the answering peer. We
have described an appropriate mapping scheme in [9];
here we briefly present the basic idea: The defined
mappings between different ontologies either refer to
the same concept, relation (equivalent class/property),
or one is a special or general case of the other
(sub/super class/property). We also note that various
ontologies may contain different supplementary
information about the same real world individual; thus
we add a special referentialClass relation between
concepts. This allows individuals to be merged if
specific properties match, creating an aggregated
entity.

2.4. Ontological query

The system adopts RDQL [10] as the query
language. RDQL is a query language in Jena [11]
models, which is based on matching {subject,
predicate, object} triples. A query is generally
constructed by using the user’s local ontology; yet, in
order to retrieve relevant data from other ontologies, it
is extended and reformulated with the inter-ontology
mappings.

3. System architecture

In this section, we explain how to construct an
ontology-aware network topology and how to route
queries intelligently in a large distributed system. In
addition, the problem of semantic heterogeneity is
taken into account as well.

3.1. Overview

3.1.1. Semantic domains and clusters. Figure 1
shows a high level picture of the network topology.
Nodes form multi-layered clusters reflecting the
semantic locality: nodes with similar ontological topics
form a big domain; inside the domain, nodes may
create smaller clusters if they share the same ontology.

21st International Conference on Advanced Networking and Applications(AINA'07)
0-7695-2846-5/07 $20.00 © 2007

For example, in Figure 1, all peers in the medical
domain are interested in medically related information.
They may be interested in different aspects of the
medical resources, and they may use different
ontologies to describe their resources, but since they
share the similar interests (medicine here), they
connect with each other through some links. Inside the
medical domain, nodes further organize themselves to
finer-grained clusters based on their ontologies. For
example, N1, N2, N5, and N8 use the same ontology:
ont1 (e.g., a medical ontology: SNOMED-RT [27]), so
they form a same-ontology cluster. In the rest of this
paper, we use the term “domain” to represent a group
of clusters sharing similar ontological topics, and use
the term “cluster” to denote the same-ontology cluster.
Clusters and domains do not have fixed boundaries;
they are formed by randomly connecting relevant
nodes.

Figure 1. The network topology

To form this multi-level structured network a node

distinguishes three kinds of neighbors based on their
semantic similarity. A peer A’s neighbor B, can be one
of these three types: (1) zero-distance neighbor (or
same-ontology neighbor, intra-cluster neighbor), if
sim(A,B)=1. (2) short-distance neighbor (or
semantically related neighbor) if sim(A,B)≥t (0<t<1 is
A’s semantic threshold.). (3) Long-distance neighbor
(or semantically unrelated neighbor) if sim(A,B)<t. A
node always tries to find as many close neighbors as
possible, but it also keeps some long distance
neighbors to reach out to other ontological clusters.

3.1.2. Query and routing. Peers in our system may
pose two kinds of queries: neighbor-discovery query
and resource-discovery query. The neighbor-discovery
query is used to construct the ontology-based network
topology. When a new node joins the network, it issues
neighbor-discovery query to find semantically related
neighbors, so that it can join their domain and cluster
by connecting to them. The resource-discovery query
is to locate desirable resources in the network.

To efficiently route queries, we propose two routing
schemes: inter-cluster routing and intra-cluster routing.
The former quickly locates semantically related

clusters; while the latter efficiently finds desirable
resources satisfying the query constraints. Related with
the two routing schemes, two routing tables are
maintained at each node: inter-cluster routing table and
intra-cluster routing table (inter-table and intra-table
for short). A node’s routing tables maintain finer-
grained knowledge of neighbors semantically closer to
it, but coarser-grained knowledge of neighbors further
from it. This reflects the characteristic of our routing
strategy: the query first walks around the network,
once it reaches the target domain, it zooms in on that
domain and investigates the domain’s ontology
properties.

3.2. Routing tables

3.2.1. Inter-cluster routing table. A node’s inter-table
stores the abstract semantic knowledge of its
neighboring clusters. Specifically, it keeps the contacts
to those clusters: its short-distance and long-distance
neighbors, their semantic similarities to this node, their
semantic signature vectors mapped in a compressed
Bloom Filter [15]. To reconcile the semantic
differences between the node and its short-distance
neighbors, inter-ontology mappings are also stored in
the inter-table. A query then can be forwarded to a
neighbor after being translated according to the inter-
ontology mapping. A neighbor-discovery query is
mainly routed through the long distance links to
quickly locate related clusters. A resource-discovery
query is forwarded only through the short-distance
links because of the topology’s semantic locality
property.

Table 1 shows the inter-table of N2, a node in
Figure 1. N3, N4, and N6 are short-distance neighbors
of N2 (assume the similarity threshold is 0.6). N7 is a
long-distance neighbor which links N2 to a
semantically unrelated domain. Neighbors’ semantic
signature vectors are compressed into a Bloom filter,
thus they are sequences of 0s and 1s. The last column
of the table stores the inter-ontology mappings between
N2 and other semantically related neighbors. For
example, the last column of the first row stores
ontology mappings between N2 and N3, which
includes equivalent class mapping Ca=Ca’ and
equivalent property mapping P1=P1’. The
representation of the mapping is defined in our
previous paper [9]. Several semi-automatic tools such
as Protégé-PROMPT [12] and Chimaera [13] exist for
eased ontology mapping.

To control the overhead of routing table
maintenance, a soft-state update mechanism is used to
keep the routing information up-to-date: nodes
periodically probe their neighbors and propagate

21st International Conference on Advanced Networking and Applications(AINA'07)
0-7695-2846-5/07 $20.00 © 2007

updated ontology information to them. At any given
time, the resource routing information may potentially
be stale or inconsistent, but in a long run, they are good
enough to direct the query forwarding to the right
peers.

Table 1. Inter-cluster routing table of node N2.

neighbor semantic
similarity

compressed
signature vector

Inter-ontology
mappings

N3 0.8 ont2 [1001010…] Ca=Ca’,P1=P1’…
N4 0.7 ont3 [0111010…] Cm⊃Cm’,P2⊃P2’
N6 0.6 ont4 [1100010…] Ct⊂Ct’ …
N7 0 ont5 [0001010…] none

3.2.2. Intra-cluster routing table. After the target
cluster has been located through the inter-cluster
routing, intra-cluster routing table is used to forward
queries inside the cluster. Since clusters are relatively
small, it is possible to index more detailed ontology
information into the intra-table. Unlike inter-table
which stores the abstract T-box knowledge, the intra-
table records detailed A-Box knowledge from
neighbors inside the same cluster, i.e., zero-distance
neighbors. Table 2 is the intra-cluster routing table of
node N2. It includes a concise summary of individual
resources which can be reached through N2’s zero-
distance neighbors: N1, N5 and N8. The resource
information is summarized into a concise structure
called triple filter, which will be explained in detail in
Section 3.5.

Table 2. Intra-cluster routing table of node N2.

neighbor A-Box summary in the format of triple filters
N1 sub:[01030212..], pre:[2100010..], obj:[31312021..]
N5 sub:[00120212..], pre:[1103013..], obj:[02212010..]
N8 sub:[01002110..], pre:[0100012..], obj:[01132010..]

3.3. Neighbor-discovery query routing

The construction of ontology-based topology is a
process of finding semantically related neighbors. A
node joins the network by connecting to one or more
bootstrapping neighbors. Then the joining node issues
a neighbor-discovery query, and forwards the query to
the network through its bootstrapping neighbors. The
neighbor-discovery query is routed mainly according
to the inter-cluster routing table.

 A neighbor-discovery query message includes
several parts: (1) The querying node’s ontology
signature vector. To reduce its size, and to accelerate
ontology matching, the signature vector is compressed
into a Bloom filter bit map. (2) A similarity threshold
which is a criteria to determine if a node is
semantically related to the query. (3) A query TTL to
decide how far the query should be propagated. (4) A
list of clusters (represented by the ontology namespace

of the cluster) the query has passed through, so that the
query would not be forwarded to the same cluster again
and again.

When a node N receives a neighbor-discovery query
Q which tries to find neighbors for a new joining node
X, N computes the semantic similarity between X and
itself; if N is semantically related to X, N will send a
Neighbor Found reply. If the query’s TTL does not
expire, N computes the semantic similarity between X
and each of its neighbors, and forwards the query to
semantically related neighbors. If no semantically
related neighbors are found, the query will be
forwarded to N’s long-distance neighbors. The detailed
query processing algorithm is illustrated in Figure 2.

Figure 2. Pseudo code of neighbor-discovery query

3.4. Resource-discovery query routing

With the semantics-based network topology and the
inter-cluster and intra-cluster routing tables, queries
can be efficiently forwarded to only a small set of
related peers. When a peer initiates a query, it first
chooses a subset of zero-distance neighbors to forward
the query. Since they use the same ontology, the zero-
distance neighbors are best candidates to forward the
query to. The selection of neighbors is based on the
intra-cluster routing algorithm, which we will describe
in Section 3.5. The query is also translated according to
the inter-ontology mappings, and forwarded to related
clusters through the short-distance neighbors whose
semantic signature vectors match the translated query.
Then the query is propagated in those clusters. When a
node receives a query, it uses similar strategy to

/* When a node N receives a neighbor-discovery query Q
issued by a new joining node X, N calls this function to process
the query*/

process_neighbor_discovery_query (query Q)
{
1. if Q has been received before, discard it, return
2. compute the semantic similarity between X and N: sim(X,N)
3. if (sim (X,N) =1)
4. send a reply indicating N is X’s zero-distance neighbor;

 the reply also contains N’s zero-distance neighbors
5. if (threshold ≤sim(X,N) < 1)
6. send a reply indicating N is X’s short-distance neighbor
7. if (TTL does not expire)
8. for each neighbor Nj in N’s inter-cluster table
9. compute the semantic similarity sim(X, Nj)
10. if (sim(X, Nj) ≥ threashold)
11. forward Q to Nj
12. if no Nj found
13. forward Q to N’s long distance neighbors
}

21st International Conference on Advanced Networking and Applications(AINA'07)
0-7695-2846-5/07 $20.00 © 2007

forward the query to their neighbors until the query
TTL expires.

3.5. Intra-cluster routing

The objective of intra-cluster routing is to find the
right individual resources which satisfy the query
constraints. The intra-cluster routing is guided by
peer’s compact A-box summaries. When processing a
query, the summaries are used in a pre-processing step
to filter the members that are likely to provide a
relevant answer to the query. Here we will give a brief
introduction of the routing scheme; the detailed routing
algorithm was explained in our previous paper [14].

3.5.1. Idea of triple filter. The individual-level (or
instance-level) indexing can be very expensive due to
the large number of instances. Our solution is to extract
the building block of the RDF A-Box statement:
subject, predicate and object, and summarize them in a
compact structure: a triple filter, which is based on
Bloom filters. A triple filter includes three Bloom
filters: the subject filter, the predicate filter, and the
object filter. An RDF triple can be hashed to these
three filters. With this technique, the network traffic
can be significantly reduced since instead of
transferring all data through the network, only an
aggregated bit map needs to be transferred.

3.5.2. RDV intra-cluster routing. The query routing
inside a cluster is based on our resource-distance-
vector (RDV) routing algorithm [14]. It uses a distance
vector approach to route the query to the nearest
matching nodes. Every peer maintains a resource index
table. This table uses the triple filters we mentioned
above, and includes distance information (in number of
hops). Peers exchange the resource indices with their
neighbors, and update relevant entries in their table.
The distance information is updated whenever passing
through a node. To reduce false positives brought by
the result of resource information aggregation, we set a
hop count limit, which we call radius, to limit the
number of hops the resource information can travel.
When a node receives a query request, the algorithm
chooses the shortest routes to forward the query. In
addition, a “heuristic jump” method is used to expedite
the searching process by skipping over the “barren”
areas.

Figure 3 illustrates a query routing example. In this
example, the radius is set to 3, so nodes are only aware
of resources within 3 hops. Node A receives a query for
resource e, which is mapped to two positions: 3 and 6
in the filter. It checks its routing table and finds two
matches: through C with 2 hops (C3=2, C6=2) and
through D with 3 hops (D3=3, D6=3). So the shortest

distance to the resource is 2 through neighbor C.
Therefore, the query is forwarded to C. Similarly, C
forwards the query to E. E finds a match in its local
vector, and then it checks the RDF database with the
original RDQL query. Readers can refer to our paper
[14] for detailed explanation of the construction,
maintenance, and usage of the routing table.

Figure 3. RDV query routing example

4. Experiments

4.1. Methodology

Extensive simulations have been preformed to
evaluate the performance of our searching scheme. For
comparisons, we simulated our searching scheme
OntSum in conjunction with the learning-based short-
cut scheme [23] and a randomly connected Gnutella
scheme [33]. The short-cut approach was chosen as
one comparison reference since it is simple yet
effective, and many popular applications (e.g., [23],
[32], [24], [25]) use this approach as their routing
scheme. Moreover, it is comparable to our approach in
a sense that it creates clusters on top of the
unstructured network. Similarly, we used the Gnutella
searching as another reference approach for its
simplicity and prevalence, which, in fact, made it a
widely used benchmark approach for many researches.

In the simulation, the semantic data follows a Zipf
(α=1) distribution between different peers. The
simulation is initialized by injecting nodes one by one
into the network until a certain network size has
reached. After that, a mixture of join, leave and query
are injected into the network based on certain ratios.
The proportion of join to leave operations is kept the
same to maintain the network at approximately the
same size. On the average, each peer issues 50 queries
during each run of the simulation. One assumption of
our simulation is that a node only issues queries with
local ontologies. The resource-discovery query is
propagated exponentially, i.e.: each node chooses a
certain number of neighbors (called walkers) to
forward the query. The neighbor-discovery query is

21st International Conference on Advanced Networking and Applications(AINA'07)
0-7695-2846-5/07 $20.00 © 2007

propagated linearly, i.e.: only the node that issues the
query forwards the query to a certain number of
walkers, while all other nodes only forward the query
to one neighbor. In the rest of the paper, we use the
term “query” to refer to “resource-discovery query”.
The simulation parameters and their default values are
given in Table 3.

Table 3. Parameters used in the simulations

Parameter Range and default value
network size 210~215 default: 10,000
initial neighbors (node degree) 5
avg node degree 14
TTL 6
resource-discovery query walkers 3 (propagate exponentially)
neighbor-discovery query walkers 2 (propagate lineally)
ontology categories 1~41 default: 20
ontology schemas per domain 4
distinct resources per domain 100
Triple filter radius 2
query possibility per time slice 20%~35% default:20%
churn possibility per time slice 5%~20% default:5%
neighbor probe possibility per
time slice

5%~20% default:10%

4.2. Results

In this part, we present the experimental results
which demonstrate the performance of our routing
algorithm.

4.2.1. Lookup efficiency. To evaluate the performance
of our semantic search, we compare our algorithm with
the other two algorithms in the metric of recall rate,
which is defined as the number of results returned
divided by the number of results actually available in
the network. In terms of scalability to network size, we
vary the number of nodes from 29 to 215.

0
0.2
0.4
0.6
0.8

1

512 1024 2048 4096 8192 16384 32768

re
ca

ll ontSum
shortCut
random

node#:

Figure 4. Recall vs. network size

0
0.2
0.4
0.6
0.8

1

1 2 3 4 5 6 7 8 9 10

re
ca

ll

ontSum
shortCut
random

TTL:
Figure 5. Recall vs. TTL (with walker#=5)

Figure 4 compares the recall rate of the three
routing strategies in different sized networks. OntSum
dramatically outperforms the other two algorithms.
Short-cut and Random’s recall rates decrease
substantially as the network size increases, while
OntSum achieves a very high recall rate even when the
network size is very large. Figure 5 illustrates the
relationship between query recall rate and query TTL
when the number of walkers are set to 5. OntSum
achieves a high recall rate with a small TTL, which
means OntSum can resolve the query much faster. This
is because OntSum searches the query only in its local
domain; in addition, because of the RDV routing,
OntSum always forwards the query to the right peers in
a cluster.

4.2.2. Searching and maintenance cost. Figure 6
depicts the overhead in terms of the number of
messages per hit under different query and churn
frequencies.

(a) In each time slice a node has a 35% possibility to issue a

query, a 5% possibility to check neighbors’ update, and a
5% possibility to join/leave.

(b) In each time slice a node has a 20% possibility to issue a

query, a 20% possibility to check neighbors’ update, and
a 20% possibility to join/leave.

Figure 6. Message overhead per query hit

Experiments in Figure 6(a) are configured to have

higher query frequency and lower churn frequency,
compared with experiments in Figure 6(b). We can see
that OntSum produces much fewer messages in both
configurations. The overhead of OntSum includes
resource-discovery query, neighbor-discovery query,
and routing table update; while the other two
algorithms only create resource-discovery query. We
can see from the right sub-figures in Figure 6 (a) and 6
(b) that the proportion of each part of the OntSum
overhead is affected by the ratio of query frequency,
node join/leave frequency, and routing table update
frequency. When the churn rate and routing table

0

200

400

600

10
24

20
48

40
96

81
92

16
38

4m
sg

m

ill
io

ns
ontSum
shortCut
random

0
10
20
30
40

10
24

20
48

40
96

81
92

16
38

4

m
sg

m

ill
io

ns

neighbor discovery
maintainance
query

0
100
200
300
400
500
600

10
24

20
48

40
96

81
92

16
38

4

m
sg

m

ill
io

ns

ontSum
shortCut
random

0
10
20
30
40
50
60

10
24

20
48

40
96

81
92

16
38

4

m
sg

m

ill
io

ns

neighbor discovery
maintainence
query

21st International Conference on Advanced Networking and Applications(AINA'07)
0-7695-2846-5/07 $20.00 © 2007

update frequency are high, the overhead created by
routing table update accounts more in the total message
overhead. Neighbor-discovery does not create many
messages at all; the messages are too few to be visible
in the figures.

4.2.3. Effect of clustering. In our system, the node
joining process configures the network topology with
respect to ontology categories. The effect of the
number of ontological categories on the performance
of OntSum algorithm is given in Figure 7. The number
of category is increased from 1 to 41 for a network of
size 10,000. In Figure 7 (a), the recall increases as the
number of category grows. This is easy to understand:
more domains and clusters are created when the
category number increases; therefore, searching has a
smaller space to explore. From Figure 7 (b), we can see
that the average message cost per query decreases, but
the cost of neighbor-discovery query increases when
the number of categories increases.

0
0.2
0.4
0.6
0.8

1

1 6 11 16 21 26 31 36 41

re
ca

ll

category#:

(a) recall vs. number of categories

(b) Relation of query cost, neighbor-discovery cost and

the number of semantic categories

Figure 7. Effects of clustering

4.2.4. Sensitivity to dynamics. Dynamics is common
in large distributed systems. Thus a robust system
needs to be resilient to the dynamics. Dynamics can
affect both the routing table’s freshness and the
underlying connectivity. To evaluate the adaptability
to different levels of dynamics, we measure the system
performance under different level of peer churn rate.

0
0.2
0.4
0.6
0.8

1

0% 10% 20% 30% 40% 50%

re
ca

ll

ontSum
short-cut
random

Figure 8. Recall vs. peer churn possibility per time slice

Figure 8 shows the relation of recall and the peer
churn rate in a 5000-node network. When peers join or
leave/die frequently, performances of short-cut and
OntSum deteriorate, because the former loses its short-
cuts, and the latter loses its routing state freshness. On
the other hand, we see OntSum has a good tolerance of
the system dynamics. It achieves good recall even in
scenarios with a high churn rate.

5. Related work

Research has harnessed the power of semantic
technologies to aid in information representation,
retrieval and aggregation over large distributed
systems. They use the standard RDF language [16, 17]
to describe data. Ontology languages such as
DAML+OIL [18] and OWL [19] built on top of RDF
allow describing relations between resources, thus
defining a more abstract and expressive resource
sharing environment. P2P technology has been used to
improve the scalability and efficiency of the semantic
searching. For example, systems such as Edutella [3]
and InfoQuilt [21] use broadcast or flooding to search
their semantic metadata, while many other projects,
like RDFPeer [22] and OntoGrid [20] attempt applying
DHT techniques to the retrieval of the ontology
encoded knowledge. Applications like REMINDIN [23],
Helios[24] and Bibster [25] add semantic short-cuts to
intelligently forward queries to the right peers.

6. Conclusion

In this paper, we presented an efficient model for
sharing and searching resources in an ontologically
heterogeneous environment. In particular, we propose
an ontology-aware topology construction method to
group nodes sharing similar ontology together, so that
queries only propagate in a relevant subset of peers. In
addition, we adopt an intelligent query routing
scheme, which routes queries to peers that are most
possibly possessing answers to the query. This system
has been evaluated by a group of simulations, which
show that the proposed routing schemes are both
efficient and scalable.

7. References

[1] HALEVY, A., IVES, Z.,MORK, P., and TATARINOV,
I. 2003. Piazza: Data management infrastructure for semantic
web applications. In Proceedings of the 12th International
Conference on World Wide Web. Budapest, Hungary.
[2] J. Broekstra et al. “A Metadata Model for Semantics-
Based Peer-to-Peer Systems”. In Proc. of the WWW
SemPGRID 2003 Workshop, Budapest, Hungary, May 2003.

200

400

600

800

1 6 11 16 21 26 31 36 41

m
sg

pe

r q
ue

ry

category#:

0
10
20

30
40

1 6 11 16 21 26 31 36 41

m
sg

pe

r n
ei

gh
b

di
sc

ov
er

category#:

21st International Conference on Advanced Networking and Applications(AINA'07)
0-7695-2846-5/07 $20.00 © 2007

[3] W. Nejdl et al. “EDUTELLA: a P2P Networking
Infrastructure Based on RDF”. In Proc. of the 11th Int. World
Wide Web Conference (WWW 2002), Honolulu, Hawaii,
USA, May 2002.
[4] S. Shi, Y. Guanwen, D. Wang, J. Yu, S. Qu and M. Chen
“Making Peer-to-Peer Keyword Searching Feasible Using
Multi-level Partitioning”. Proc. Of the 3rd International
Workshop on Peer-to-Peer Systems, San Diego, CA, USA.
[5] P.Reynolds and A. Vahdat. “Efficient Peer-to-Peer
Keyword Searching”. In Proceedings of ACM/IFIP/USENIX
Middleware, June 2003
[6] M. Cai, M. Frank, J. Chen and P. Szekely, “ MAAN: A
Multi-Attribute Addressable Network for Grid Information
Services” The 4th International Workshop on Grid
Computing, 2003.
[7] LI, J., LOO, B. T., HELLERSTEIN, J., KAASHOEK, F.,
KARGER, D. R., AND MORRIS, R. “On the Feasibility of
Peer-to-Peer Web Indexing and Search”. In Proceedings of
the 2nd International Workshop on Peer-to-Peer Systems,
(IPTPS ’03). (Berkeley, CA, Feb. 2003).
[8] C.Tang and S.Dwarkadas. “Hybrid Gloablal-Local
Indexing for Efficient Peer-to-Peer Information Retrieval”. In
Proceedings of USENIX NSDI, March 2004
[9] Juan Li, Iulian Radu and Son Vuong, "GODIS: An
Ontology-Based Resource Discovery Framework for Large-
Scale Grids" in Proceedings of the 18th IASTED
International Conference on Parallel and Distributed
Computing and Systems, November 13-15, 2006. Dallas,
Texas, USA
[10] A. Seaborne. “RDQL: A Data Oriented Query Language
for RDF Models.” www-uk.hpl.hp.com/people/afs/RDQL/
[11] Brian McBride. “Jena: Implementing the RDFmodel and
syntax specification.” Technical report, Hewlett Packard
Laboratories, Bristol, UK, 2000.
[12] N.F. Noy and M.A. Musen. PROMPT: Algorithm and
tool for automated ontology merging and alignment. In
Seventeenth National Conference on Artificial Intelligence
(AAAI-2000), Austin, TX, 2000.
[13] D. L. McGuinness, R. Fikes, J. Rice, and S. Wilder. “An
environment for merging and testing large ontologies”.
Proceedings of the Seventh International Conference
(KR2000), San Francisco, CA, 2000.
[14] Juan Li and Son Vuong "Semantic Overlay Network for
Grid Resource Discovery" in Proceedings of the 6th
IEEE/ACM International Workshop on Grid Computing,
November, 2005, Seattle, USA
[15] B.Bloom. “Space/time tradeoffs in hash coding with
allowable errors”. Communications of the ACM, pages
13(7):422-426, July 1970.
[16] Ora Lassila and Ralph R. Swick, “W3C Resource
Description framework (RDF) Model and Syntax
Specification”.
[17] Dan Brickley and R.V.Guha. “W3C Resource
Description Framework (RDF) Schema Specification”.
[18] I. Horrocks, F. van Harmelen, and P. Patel-Schneider.
DAML+OIL.
http://www.daml.org/2001/03/daml+oil-index.html, March
2001.
[19] W3C. Web-ontology (webont) working group.
http://www.w3.org/2001/sw/WebOnt/.
[20] OntoGrid project: http://www.ontogrid.net/

[21] M. Arumugam, A. Sheth, and I. B. Arpinar. “Towards
peer-to-peer semantic web: A distribuited environment for
sharing semantic knowledge on the web.” In Proc. of the
International World Wide Web Conference 2002
(WWW2002), Honolulu, Hawaii, USA, 2002.
[22] Cai, M., Frank, M., “RDFPeers: A scalable distributed
RDF repository based on a structured peer-to-peer network”,
in proc of WWW conference, May 2004, NewYork, USA, pp
650-657
[23] Tempich, C., Staab, S., Wranik, A., “REMINDIN’:
semantic query routing in peer-to-peer networks based on
social metaphors” International World Wide Web Conference
(WWW), New York, USA, 2004.
[24] S. Castano, A. Ferrara, S. Montanelli, and D. Zucchelli.
Helios: a general framework for ontology-based knowledge
sharing and evolution in P2P systems. In IEEE Proc. of
DEXA WEBS 2003 Workshop, Prague, Czech Republic,
September 2003.
[25] Castano, A., Ferrara, S., Montanelli, S., Pagani, E.,
Rossi, G.: Ontology addressable contents in p2p networks.
In: Proceedings of the WWW’03 Workshop on Semantics in
Peer-to-Peer and Grid Computing. (2003)
[26] F. Baader, D. Calvanese, D. L. McGuiness, D.
Nardi, P. F. Patel-Schneider: The Description Logic
Handbook: Theory, Implementation, Applications.
Cambridge University Press, Cambridge, UK, 2003.
ISBN 0-521-78176-0
[27] College of American Pathologists. SNOMED RT
- Systematized Nomenclature of Medicine Reference
Terminology, VERSION 1.1, USER GUIDE, 2001.
[28] M. Andrea Rodriguez, Max J. Egenhofer,
"Determining Semantic Similarity Among Entity
Classes from Different Ontologies". IEEE
Transactions on Knowledge and Data Engineering,
VOL. 15, NO. 2, MARCH/APRIL 2003.
[29] J. Jiang and D. Conrath, “Semantic Similarity
Based on Corpus Statistics and Lexical Taxonomy,”
Proc. Int’l Conf. Computational Linguistics
(ROCLING X), 1997.
[30] J. Lee, M. Kim, and Y. Lee, “Information
Retrieval Based on Conceptual Distance in IS-A
Hierarchies,” J. Documentation, vol. 49, pp. 188-207,
1993.
[31] G. Miller, “WordNet: A lexical database for
English”, Communications of the ACM, vol. 38, no.
11, 1995.
[32] K. Sripanidkulchai, B. Maggs, and H. Zhang.
Efficient content location using interest-based locality
in peer-to-peer systems, In INFOCOM’03.
[33] http://www.gnutella-music-download.com

21st International Conference on Advanced Networking and Applications(AINA'07)
0-7695-2846-5/07 $20.00 © 2007

