
A Scheme for Balancing Heterogeneous Request Load in
DHT-based P2P Systems

Juan Li
University of British Columbia

2366 Main Mall
Vancouver, B.C.

Canada

juanli@cs.ubc.ca

Billy Cheung
University of British Columbia

2366 Main Mall
Vancouver, B.C.

Canada

bccheung@cs.ubc.ca

Son Vuong
University of British Columbia

2366 Main Mall
Vancouver, B.C.

Canada

vuong@cs.ubc.ca

ABSTRACT
DHT-based P2P systems have been proven to be a scalable and
efficient means of sharing information. With the entrance of
quality of services concerns into DHT systems, however, the
ability to guarantee that the system will not be overwhelmed due
to load imbalance becomes much more significant, especially
when factors such as item popularity and skewing are taken into
consideration. In this paper, we focus on the problem of load
imbalance caused by skewed access distribution. We propose an
effective load balancing solution, which takes the peer
heterogeneity and access popularity into account to determine the
load distribution. Our algorithm achieves load balancing by
dynamically balancing the query routing load and query
answering load respectively. Experimentations performed over a
Pastry-like system illustrate that our balancing algorithms
effectively balance the system load and significantly improves
performance.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems – distributed applications.

General Terms
Algorithms, Performance

Keywords
Load-balancing, distributed hash tables (DHT), peer-to-peer (P2P)
systems, quality of service (QoS)

1. INTRODUCTION
Distributed Hash Tables (DHTs) [1][2][3][4] provide a reliable,
scalable, fault tolerant and efficient way to manage P2P networks.
Typically employing some variant of consistent hashing to
associate keys with nodes, each node is mapped to a unique ID
and owns the set of objects whose IDs are “closest” to it, while

object lookup queries consist of following well-defined paths
from a querying node to a destination node that holds the index
entries pertaining to the query. In theory, DHTs can provide fair
and scalable service because they achieve a balanced partition of
workload amount the nodes in the system. In practice however,
this is not always the case. Given the heterogeneous nature of
individual peer capacity in a P2P network (due to non-uniform
computational power, storage capacity and network bandwidth
difference between peers), even a uniform workload distribution
amongst peers can still lead to load imbalance problems,
additionally encumbered by the fact that the consistent hash used
by DHTs can cause certain peers to have up to O(logN) times as
many objects as the average peer in the network [3], intensifying
the imbalance.

Furthermore, since objects and queries within the system tend to
be skewed [5][6] (i.e. certain objects are significantly more
popular than others), heavy lookup traffic load is experienced at
the peers responsible for popular objects, as well as at the
intermediary nodes on the lookup paths to those peers. When
subsequent tasks are then obliviously assigned to the already
overloaded node, the average response time consequently
increases drastically. This paper aims at balancing the highly
unbalanced load caused by skewed object and query distribution
through the use of a comprehensive balancing mechanism, which
includes an adaptive load redistribution scheme as well as a
dynamic routing table reconfiguring scheme.

2. RELATED WORK
There have been many load balancing schemes proposed for
DHT-based systems. Roughly, we divide them into four
categories:

The virtual server approach [7][8][9][18] focuses on the
imbalance of the key distribution due to the hash function. Each
physical node instantiates O(logN) number of virtual servers with
random IDs that act as peers in the DHT, which reduces the load
imbalance to a constant factor. To address peer heterogeneity,
each node selects a number of virtual servers to create
proportional to its capacity. Unfortunately, the usage of virtual
servers greatly increases the amount of routing metadata needed
on each peer and causes more maintenance overhead. In addition,
the number of hops per lookup (and latencies) increases.
Moreover, it doesn’t take object popularity into account.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

Unlike the virtual server approach, the dynamic ID approach uses
just a single ID per node [10][11][12][19]. The load of a peer can

Qshine'07, August 14-17, 2007, Vancouver , Canada.
Copyright 2007 ACM 978-1-59593-756-8…$5.00.

be adjusted by choosing a suitable ID in the namespace. However,
all such solutions requires IDs to be reassigned to maintain load
balance as nodes dynamically join and leave the system, resulting
in a high overhead because it involves transferring objects and
updating overlay links.

The third class of approaches uses multiple hash functions to
balance the load. The power of two choices [13] uses two or more
hash functions to map a key to multiple nodes and store the key
on the peer that is the least loaded. In the k-choice [14] load
balancing algorithm, the node uses multiple hashes to generate a
set of IDs and at join time selects an ID in a way to minimize the
discrepancies between capacity and load for itself and the nodes
that will be affected by its join time. While such a strategy is
simple and efficient, it increases the computational overhead for
publishing and retrieving content, since multiple hash functions
have to be computed each time; in addition, it is a static
allocation, and does not change in the case that the workload
distribution shifts.

The last category of balancing schemes is by caching and
replication [2][3][20]. Hotspots and dynamic streams are handled
by using caches to store popular objects in the network, and
lookups are considered resolved whenever cache hits occur along
the path. Pastry [2] and Chord [3] replicate an object on the k
servers whose identifiers are closest to the object key in the
namespace to improve the availability, but it also help balance the
load of a popular topic. Unfortunately, the last few hops of a
lookup are precisely the ones that can least be optimized [15].
Moreover, since the query load is dynamic, a fixed number of
replicas do not work well; if the number is chosen too high, then
resources may be wasted, and if it is set too low, then these
replicas may not be enough to support a high query load.

3. ADAPTIVE LOAD BALANCING
SCHEME
In this section, we detail our load balancing scheme, focusing on
the imbalance caused by heterogeneous object popularity. We
propose a comprehensive load balancing strategy, which address
this problem by dynamically re-distributing the load of hot spots
to other ‘cold spots’. Particularly, we distinguish two types of
load: query answering load and query forwarding load (query
load and routing load for short). Aiming at balancing these two
kinds of load, three balancing strategies have been proposed: (1)
adaptive object replication scheme, which targets balancing the
query load; and (2) adaptive routing replication and (3) dynamic
routing table reconfiguration, both aimed at balancing the
system’s routing load. Each node analyzes the main cause of its
overloading and uses a particular balancing algorithm to correct
its situation.

3.1 Load Metric
Our load balancing scheme involves a load metric to gauge the
activity of each peer node and make the necessary adjustments.
Each peer p in the network has a capacity C for serving requests,
which corresponds to the maximum amount of load that it can
support. In our paper, this is derived from the maximum number
of queries that can be routed, answered, or queued per second by
the peer. It is assumed that any arriving traffic that can not be
either processed or queued by the peer is dropped. It is also

assumed that nodes will be able to define their capacity
consistently via a globally ratified/used metrics scale.

At any given time, the load of peer p is defined as the number of
requests received per unit of time. We focus on two kinds of
requests: the query routing request, and query answering requests.
On receiving a routing request, the peer checks its routing table
and forwards the query to next hop. If it receives a query
answering request (meaning that it has a locally stored solution to
that request), it serves that request according to the application’s
needs (For example, answering a complex query, or transferring a
file, and so on). In this paper, the current load value L of a node
is defined in Equation (1) as the sum of its current routing load
and its current query load:

LqLrL += (1)

lrbqaL ji ××+×= ∑∑)((2)

Both the routing and query load can be represented by the number
of requests received in unit time. Assuming that the unit load is l,
and each routing request creates a unit load while each query
request creates b unit load, then (1) can be converted to (2), in
which ∑ iq is the number of query requests in unit time period,

and ∑ ir is the number of routing requests in unit time period.

For any given peer p, we also define an overloading threshold
value, To, which represents the point after which additional
workload placed on the peer will induce overloading, and trigger
load redistribution for p. This value can be represented as a
portion of the peer’s capacity (e.g., To = 0.8C, which means that
p is considered overloaded when it reaches 80% of its capacity).
We also introduce another load threshold value, Ts, that
represents the ‘safe’ workload capacity for a peer. A peer will
agree to accept redistributed load from the overloaded peer only
when its load is below Ts. The goal of load redistribution is to
make the workload on all participating peers fall below their
respective Ts in order to guarantee that none of them will again be
overloaded soon after the redistribution.

3.2 Adaptive Object Replication Algorithm
Nodes storing very popular objects are susceptible to becoming
overwhelmed due to external requests for those objects. In this
case, attempting to redistributing the load via shedding objects
and keys to other nodes does not guarantee any noticeable
improvement, since even one very popular key could overload a
node. Therefore, we suggest a replication-based method to relieve
the load of overwhelmed nodes. By replicating popular keys of
overloaded nodes to lightly loaded nodes, we help to balance the
network load. While this idea of balancing by replication is by
itself not new, the when, where, and how we propose are.
Specifically, when does replication occurs, where do we locate
the candidates to help out an encumbered node, and how do the
consequences of the redistribution get announced to the rest of the
system.

When: Each peer periodically checks its current load via the
previously mentioned load metrics. If it is above the overloading
threshold (i.e., L > To), and this overloading is caused mainly by
query loads (i.e., ∑∑ ×≥×)(ji rbqa), it will pick a light loaded

node to replicate its keys thus sharing the load. When more than

one peer is responsible for a popular key, each responsible peer
only manages part of the load, and reducing the chance of
overloading.

Where: Upon detecting that it has crossed the ‘overload’
threshold, a node will issue a replica discovery query to the
network, broadcasted (with limited steps) down the DHT
broadcast tree (with the querying node as the root). Any lightly
loaded nodes (defined previously as nodes with current load
L<Ts) in the path of the tree will reply with its load information.
Once enough responses have been received, the overloaded node
begins transferring its keys and objects to these candidates,
creating replica nodes of itself.

How: Once replicas are created, dissemination of information
about the existence of these new replica must occur. For prefix-
based DHTs like Pastry or Tapestry, the replica informaiton is
updated at all the peers in the original peer’s neighborhood set,
leaf set, and routing table. Those nodes in turn update their own
state based on the information received. Similar to the node
joining process, the total cost for the replica update in terms of the
number of messages exchanged is O(log2

bN). Similarly, for
Chord-based DHTs, the replica info is updated at the fingers and
predecessors of the related nodes to reflect the addition of this
replica, requiring O(log2 N) messages. This process can be carried
out asynchronously, since the peers in the routing table already
have a pointer to the original peers and asynchronous update will
not negatively affect the correctness of the system. When a query
needs to be forwarded to a popular key, neighbouring nodes can
now pick peers in a round-robin fashion from the list of available
peers holding the key. Thus, the queries for the hot key are now
partitioned among the multiple peers storing the key.

When a popular key later becomes unpopular, the replica nodes
can just get rid of the replicated keys, using access history to
gauge the popularity of the replica.

3.3 Adaptive Routing Replication Algorithm
Replicating popular keys relieves the query answering load of the
nodes responsible for the keys. However, another major source of
workload in DHT overlays is caused by relaying queries among
nodes. A node may be overwhelmed simply by the traffic of
forwarding incoming routing queries. For example, the last hop
neighbours of a popular key can be overloaded by forwarding
queries to the popular node. While this problem can be partially
solved by the aforementioned duplication of popular keys to
disperse the traffic, it cannot completely alleviate the problem
since certain nodes in the system might still be functioning
effectively as traffic hubs for popular sections of the network. To
address this problem, we propose a balancing scheme which
actively redistributes the routing load of an overloaded node by
duplicating its routing table to other nodes, thereby sharing its
routing load. When a node is overloaded by routing loads, it will
pick a light loaded node to replicate its routing table, so that the
replica node can share its routing load. As with the object
replication algorithm, the routing replica information should be
propagated to other related nodes. These nodes subsequently
update their respective routing tables by adding a replica entry to
the entry of the original node so that future queries can be routed
to either the original node or the new node, all the while
maintaining system network correctness. Besides load balancing,

replication approach can also improve the routing resiliency in the
face of network failures.

Figure 1 shows an example of the Pastry structure with the
replication of routing tables. The query for item ID 0221, which is
actually served by node 0222, is initiated at node 2012. According
to its routing table, node 2012 chooses 0021 as the next hop.
Node 0021 determines that node 0200 should be the right node to
forward the query. Since node 0200 has a replica at node 1102,
node 0021 may choose 1102 as the next hop. When the query is
sent to 1102, it uses the duplicated routing table for 0200 to serve
the query and send the query to the destination node 0222. When
node 0200 is exposed to a high load, the replicas will share some
of the traffic, preventing overload.

0020, 0021keys

routing
table

2012

0021

1102

0200

0222

10220 2100

0 0112
0200
1102

0002 0012 2
1

keys

routing table
11220021

0 2102
1

leaf set

2

2020
2

leaf set 0010, 0022 ...

keys:0200

leaf set: 0122, 0202

Node:0200

0221,0200
keys

1100, 1200...keys

routing
table

10001
1

leaf set 1002,1222

0

2122
1201

2

Node:1102
duplicated routing table for 0200

2011, 2020...

 2002, 2022...
routing table

10000 2122
0112 2

0
0 0222

leaf set0122, 0202

routing
table

10000 2122
0112 2

0
0 0222

Figure 1. An example of adaptive routing replication
algorithm

3.4 Dynamic routing load adjusting algorithm
In addition to the use of replication, another scheme to balance
the routing load is by dynamically reconfiguring the routing table.
In the previously mentioned methods, an overloaded node
actively redistributes its own load, but in cases where external
policies or the network environment prevents the redistribution
effort, replacing routing table content can help relieve highly
loaded nodes.

This algorithm is tailored specifically for DHTs like Pastry or
Tapestry. In those systems, many nodes with the same prefix can
be potentially filled in a node’s routing table; the one in the table
is the one the node knows, and with topological metric
considered, it will ‘pick’ the one closest to itself. We propose
changing the strategy of choosing nodes in the routing table to
balance routing load (especially to relieve heavily loaded nodes).
In lieu of simply choosing according to a proximity metric, we
choose with lower routing load instead. Whenever an overloaded

node receives a querying message from its neighbour, it will reply
with a message indicating its overloaded status. This neighbour,
receiving the message, will, at the earliest opportunity possible,
replace the entry of the overloaded node in its routing table with
another node of the similar prefix. The light-loaded candidate
nodes are learned from forwarded query messages which include
IDs of passed nodes. By doing so, traffic is alleviated from the
overloaded load as long as it is not the actual ‘end target’ of the
query request, as the replacement node will be able to direct any
queries the original node could’ve, and forwarding traffic is
spread out more evenly.

Continuing from our example in Figure 1, in node 1102’s routing
table, let us assume that a neighbor node, 2122, (1st row 3rd
column) is heavily-loaded. When a query passes through node
2012 to 0021 and then comes to node 1102, since 2012 shares the
identical first digital prefix (2) as the overloaded neighbour 2122
in 1102’s routing table, the entry of 2122 will be replaced with
2012. This way, the traffic to the more heavily loaded 2122 will
be redirected to the more free 2012.

4. EXPERIMENTAL RESULTS
In this section, we examine the experimental effectiveness of our
proposed load balancing schemes. We applied each of our
schemes to the Pastry system individually and evaluated the
difference in performance. Then, we examined their combined
effect on the system.

4.1 Setup
Our balancing algorithm is experimented on Pastry. Each peer is
assigned a 128-bit identifier, using a sequence of digits with base
2b. In our simulation, the value of base b is 1. Each node is
randomly assigned a value C representing its capacity
(). A node’s current load is represented by the
number of query forwarding requests and query answering
requests it receives per unit time. The load caused by the two
kinds of requests has different weight to simulate the different
causes they would incur. In our experimentations, we assume that
the query load is similar to that of a simple question answering
procedure, such that we can set the ratio of the weight of query
answering load vs. query routing load to 5 (i.e. a:b = 5:1 in
Equation (2)). Given the lightness of the query answering process
in the current experiment, this would be a reasonable projection.
In the case of more significant operations, such as file transfers,
the ratio will be larger by several orders of magnitude.

{ 4,3,2,1,0,5 ∈= iC i }

The simulation is carried out on an overlay network with 1,000
nodes and 20,000 objects (2,000 distinct ones) randomly
distributed throughout the nodes. Queries are issued with different
frequencies and distributions (random distribution and Zipf
distributions with different α value, which represents how
skewered the distribution is, with a larger α value indicating
greater levels of skewness). For the purpose of our experiments,
the To (overload) threshold for each node was set at 0.8, and the
Ts (safety) threshold at 0.6 of its maximum capacity. Each
experiment is run ten times with different random seeds, and the
results are the average of these ten sets of results.

Four different load balancing strategies were evaluated and
analyzed; 1) Simple Pastry: this is the basic Pastry system with no

load balancing strategy used (represented by Non in the following
figures). 2) Reconfiguring the routing table (RR). 3). Duplicating
objects (DO). 4) Duplicating the routing table (DR). and 5)
Integrating all of the previous three balancing schemes (All). The
performance metric we used is the load/capacity ratio.

4.2 Results
4.2.1 Effect of query distribution
In an open, live P2P environment, query distribution follows a
Zipf distribution [17]. Figure 2 shows the effect of query
distribution on a node’s load burden (without any balancing
mechanism used), indicating the mean, 1st and 99th percentiles of
the peer workload/capacity ratio. This percentile represents the
workload variances on the peers, such that the greater the
difference, the less evenly the load is being distributed. In the
experiment, we increase the skew degree of the query distribution
from random to Zipf with α=1.25. We can see that query
distribution has a significant impact on peer load. The more
skewed the query distribution, the more unevenly distributed the
load becomes, causing some nodes to suffer from a very high load
when the query is sufficiently skewed.

0
100
200
300
400
500

random α=0.75 α=1.00 α=1.25
query distribution

lo
ad

/c
ap

ac
ity

Figure 2. Mean, 1st and 99th percentiles of the ratio of

load/capacity under different query distribution

4.2.2 Performance of load balancing schemes under
different query distributions
Overloading a node can induce an overflow to its request queue,
causing new coming queries to be dropped, which in turn
deteriorates the system performance. Figure 3 shows an overview
of the fraction of dropped queries under different query
distributions and with each of our load balancing schemes. We
can clearly see that each of our load balancing algorithms reduce
the query drop fraction, thus improving the system performance.
Specifically, algorithm All, which integrates all of the other
algorithms we presented earlier, experiences the best performance
in terms of minimizing the query drop rate even under a highly
skewed query distribution.

A caveat worth mentioning is that in Figure 3, we can see that
duplicating routing table scheme reduces more dropped queries
compared to duplicating objects. Note that this is dependent on
the parameters we set, particularly the query load to routing load
ratio (a:b=5:1). If the ratio is larger, it means that the query
answering is more complex compared to the query forwarding,
thereby accounting for more of the total load. From the figure, we
see clear indication of the effectiveness of our proposed
algorithms. The following is a more in-depth examination of the
results of each of our balancing schemes:

random
a:0.75

a:1.0
a:1.25

Non
RR

DO

DR

All

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

fra
ct

io
n

of
 d

ro
pp

ed
 q

ue
rie

s

query distribution
ba

lan
cin

g s
ch

em
es

Non
RR
DO
DR
All

Figure 3. Fraction of dropped queries under different query

distribution and load balancing schemes.

4.2.3 Balancing of routing load
Figure 4 illustrates the performance of each query routing-related
balancing algorithm relative to the query insertion rate. The
network size is 103 and the query distribution is Zipf (α =1). The
figures show the percentile of the routing load in terms of query
forwarding requests received. As mentioned, the smaller the
difference, the better the load balancing performs. We can see
that, as we increase the query frequency, the variance for all the
algorithms becomes invariantly larger. This is because query
distribution is skewed, so increasing the query frequency will
result in more unbalanced requests, exacerbating the existing
imbalance problem.

While the majority of the experimental results were as we
expected, the re-configuring routing table scheme contributed
surprisingly little to performance gain. We attribute this
observation due to the following: (1) Prefix requirements for the
bottom rows of a node’s routing table are more stringent, so
candidates for the replacement nodes of these rows are more
difficult to find, resulting in the algorithm being unable to
efficiently adjust this part of the routing (2) Consequently, the
last-hops-neighbor of a node cannot find replacements to route to
that node, so neighbours (in ID space) of a popular node can not
be relieved.
We can also observe from Figure 4 (d) that by integrating all of
the schemes together, we were able to achieve performance
beyond the sum of the benefits from just reconfiguring the routing
table and duplicating the routing table. We surmise that this is due
to the fact that although duplicating-objects does not balancing
routing loads directly, it redistributes the load of hot spots,
helping to relieve the traffic towards the hot spots and thus
avoiding overloading the neighborhood with forwarding requests.

0

200

400

600

800

500 1000 1500 2000 2500
query frequncy

of

 ro
ut

in
g

re
qu

es
ts

(a) Pastry, without any balancing adjustment

0

200

400

600

800

500 1000 1500 2000 2500
query frequncy

of

 ro
ut

in
g

re
qu

es
ts

(b) Balancing by dynamic re-configuring routing table

0
50

100
150
200
250

500 1000 1500 2000 2500
query frequncy

of

 ro
ut

in
g

re
qu

es
ts

(c) Balancing by duplicating routing table

0

50

100

150

500 1000 1500 2000 2500
query freq

of

 ro
ut

in
g

re
qu

es
t

(d) Balancing by all combination

Figure 4. Mean, 1st and 99th percentiles of the routing load (in
terms of number of routing request) under different query
frequency

4.2.4 Balancing of query answering load

0
100

200
300

400
500

500 1000 1500 2000 2500
query freq#

of
 q

ue
ry

 re
qu

es
t

(a) Pastry, without any balancing adjustment

0
10
20

30
40
50

500 1000 1500 2000 2500
query freq

of

 q
ue

ry
 re

qu
es

t

(b) Balancing by duplicating objects

Figure 5. Mean, 1st and 99th percentiles of the query load (in
terms of number of query answering request) under different
query frequency

Figure 5 shows the result of the adaptive object replication
algorithm. We can see that the algorithm effectively relieves the
overloaded nodes and balances the load because the hot items are
quickly replicated in other nodes in the network.

4.2.5 Balancing of the whole system load
Figure 6 shows the results of the combined algorithm in balancing
system load. (Note: the ratio of the weight of query answering
load and the weight of query forwarding load is 5:1. With
different ratio, the figure may change a little bit.) The results of
the experiment clearly indicate significant and drastic effect on
system load balances.

0

500

1000

1500

2000

2500

500 1000 1500 2000 2500
query freq

lo
ad

(a) Pastry, without any balancing adjustment

0
50

100
150
200
250
300
350

500 1000 1500 2000 2500
query freq

lo
ad

(b) Balancing by combine all schemes

Figure 6. Mean, 1st and 99th percentiles of the system load

under different query frequency

5. CONCLUSION
We have presented an effective approach to balance load in DHT
systems. Our work distinguishes routing load and retrieval load,
and deals them separately. By dynamically replicating different
potions of the overloaded node based on source of the overloading
(replicating either its routing table or its keys), we overcome the
restrictive nature of traditional balancing schemes that assumes
homogeneity among peers and the type of load they incur. This
approach enables the system good load balance even when
demand is heavily skewed. Extensive simulation results indicate
significant improvements in maintaining a more balanced system,
leading to improved scalability and performance.

6. REFERENCES
[1] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. “Tapestry:

An Infrastructure for Fault-Tolerant Wide-Area Location and
Routing,” Technical Report, UCB/CSD-01-1141, April 2000.

[2] A. Rowstron and P. Druschel. “Pastry: Scalable, Distributed
Object Location and Routing for Large-Scale Peer-to-Peer
Systems,” in Proceedings of the IFIP/ACM International
Conference on Distributed Systems Platforms, Middleware,
November 2001.

[3] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H.Balakrishnan. “Chord: A Scalable Peer-to-Peer Lookup
Service for Internet Applications,” ACM SIGCOMM, August
2001, pp. 149-160.

[4] S. Ratnasamy, P.Francis, M.Handley, R.Karp, and S.
Shenker. “A Scalable Content-Addressable Network,” ACM
SIGCOMM, August 2001, pp. 161-172

[5] L. Breslau, P. Cao, L. Fan. G. Phillips, and S. Shenker. Web
Caching and Zipf-like distributions: Evidence and
implications. In Proceedings of the Conference of the IEEE
Communications Society, (INFOCOM 1999), pages 126-134,
Mar 1999

[6] K. Sripanidkulchai. “The popularity of Gnutella queries and
its implications on scalability”. In O’Reilly’s
www.openp2p.com, Feb. 2001.

[7] B. Godfrey, K. Lakshminarayanan, S. Surana, R. Karp, and
I. Stoica, “Load balancing in dynamic structured P2P
systems,” in Proceedings of the 23rd Conference of the IEEE
Communications Society (Infocom 2004), 2004.

[8] D. Karger and M. Ruhl, “Simple efficient load balancing
algorithms for peer-to-peer systems,” in Proceedings of 16th
ACM Symposium on Parallelism in Algorithms and
Architectures, 2004, pp. 36–43.

[9] A. R. Karthik, K. Lakshminarayanan, S. Surana, R. Karp,
and I. Stoica, “Load balancing in structured P2P systems,” in
Proceedings of 2ndInternational Workshop on Peer-to-Peer
Systems, 2003, pp. 68–79.

[10] M. Naor and U. Wieder. “Novel architectures for P2P
applications: the continuous-discrete approach.” In
Proceedings of the Fifteenth ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA 2003),
June 2003.

[11] G. Manku. “Balanced binary trees for ID management and
load balance in distributed hash tables.” In Proceedings of
Twenty-Third Annual ACM SIGACT-SIGOPS Symposium on
Principles of Distributed Computing (PODC 2004), 2004.

[12] D. Karger and M. Ruhl. Simple Efficient Load Balancing
Algorithms for Peer-to-Peer Systems. In Proceedings of the
Sixteenth ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA 2004)

[13] J. Byers, J. Considine, and M. Mitzenmacher, “Simple load
balancing for distributed hash tables,” in Proceedings of 2nd
International Workshop on Peer-to-Peer Systems, 2003, pp.
80–87.

[14] J. Ledlie and M. Seltzer, “Distributed, secure load balancing
with skew, heterogeneity, and churn,” in Proceedings of the
24rd Conference of the IEEE Communications Society,
(Infocom 2005), 2005.

[15] MJ Freedman, D Mazieres, “Sloppy hashing and self-
organizing clusters” in Proceedings of 2nd International
Workshop on Peer-to-Peer Systems (IPTPS '03), February
2003, Berkeley, CA, USA.

[16] Plaxton C. G., R. Rajaraman, and A. W. Richa. “Accessing
nearby copies of replicated objects in a distributed
environment “. Theory of Computing Systems, 32:241-280,
1999.

[17] George K. Zipf, “Human Behaviour and the Principle of
Least-Effort”, Addison-Wesley, Cambridge MA, 1949

[18] Godfrey, B., Lakshminarayanan, K., Surana, S., Karp, R.,
Stoica, I.: “Load balancing in dynamic structured P2P
systems”. in Proceedings of the 23rd Conference of the IEEE
Communications Society (Infocom 2004), 2004.

[19] Zhiyong Xu, and AXaxmi Bhuyan, "Effective Load
Balancing in P2P Systems", in Proceedings of the Sixth

IEEE International Symposium on Cluster Computing and
the Grid,(CCGrid2006), 2006.

[20] Vijay Gopalakrishnan, Bujor Silaghi, Bobby Bhattacharjee,
and Pete Keleher. Adaptive replication in peer-to-peer
systems. In Proceedings of 24th International Conference on
Distributed Computing Systems (ICDCS), 2004.

