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Abstract 

Grids technology enables the sharing and 
collaborating of wide variety of resources. To fully 
utilize these resources, effective discovery techniques 
are necessities. However, the complicated and 
heterogeneous characteristics of the grid resource 
make sharing and discovering a challenging issue. In 
this paper we propose a comprehensive semantic 
based resource discovery framework, which performs 
an effective searching according to the semantic 
properties of what is searched. In the framework, 
nodes are grouped into clusters according to some 
criteria. Resources are indexed and aggregated with a 
highly compressed format. The summarized index can 
act as network knowledge to guide routing in the 
network. Intra-cluster and inter-cluster routing 
strategies are proposed to support scalable and 
efficient searching. Results from simulation 
demonstrate that this architecture is very effective in 
grid resource discovery.  

1. Introduction 

The popularity of the Internet, the ubiquity of 
computers, and the availability of the high speed 
network technologies have led to the development of 
grid computing [1,2]. The objective of creating grids is 
to share and access large and heterogeneous collections 
of resources. Thus an effective and efficient resource 
discovery mechanism is crucial to realize this goal. 
However, in grids, the resource can have potentially 
very large number and they may have varieties of types, 
such as computing power, storage systems, network 
bandwidth, data sources, software, and devices. 
Moreover, they can be geographically distributed and 
owned by different organizations. For all the above 
reasons, the issue of resource discovery in large scale 
grid environment is very challenging.  

Traditionally, grid resource discovery is usually 
managed with centralized or hierarchical servers. For 

example, Globus MDS-2 [3] uses an LDAP based 
directory service for resource registration and lookup. 
Condor’s Matchmaker [4] adopts a centralized 
mechanism to match the advertisement between 
resource requesters and resource providers. However, 
these centralized servers can become bottlenecks and 
points of failures. So the system would not scale well 
when the number of the nodes increases. Peer-to-peer 
(P2P) applications have been successful in sharing 
resource. A current trend is to combine P2P and grids 
techniques together. [20] argues that these two 
technologies will benefit from converging into each 
other’s field. The unstructured P2P systems like 
Gnutella [5] and FastTrack [12] often exploit either 
flooding or broadcasting searching mechanisms, which 
is clearly not scalable. Recently, super-peer networks 
[13] like Morpheus [14] or KzzaA [15] have been 
proposed to get the benefits of both centralized and 
distributed search. The DHT based P2P systems [16-19] 
are efficient and scalable, while a missing feature is the 
ability to support complex query. More recently, A few 
studies [10,21,22] extended the DHT scheme to 
support keywords or multi-attribute query. However, 
these systems require retrieving large amount of results 
from many different peers to find the intersection.  

 In this paper, we use RDF [6,7] to represent both 
resource and query. To support complex query without 
flooding the whole network, we use a hierarchical 
semantic routing algorithm. The principle of the 
algorithm is to use the content of query and the 
knowledge of the network to drive routing decisions. 
Specifically, nodes in the network are grouped into 
clusters according to their mutual interest, and those 
sharing similar interests are in the same cluster. 
Therefore, most queries can be satisfied within the 
cluster. Nodes in the same cluster build a tree. To share 
resource among clusters, the roots of the trees in all the 
clusters form an overlay network. Consequently, the 
query routing has two phases: the intra-cluster routing 
and the inter-cluster routing. Both routing schemes 
utilize Bloom filter [8] based summarization to keep 
and aggregate knowledge about the network. The 
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network knowledge can help route queries towards 
peers known to have related concepts. This approach 
guarantees a higher query hit ratio with respect to other 
approaches oblivious of the resource location. 
Moreover, it reduces both the network and the peers 
load, thus providing a greater scalability. 

The remainder of the paper is organized as follows. 
Section 2 describes the RDF resource representation. 
Section 3 explains the hierarchical semantic routing 
scheme. Section 4 gives the experimental results. 
Section 5 concludes the paper. 

2. Resource representation 

Metadata plays a central role in the effort of 
providing search techniques that go beyond string 
matching. We utilize RDF metadata representation to 
encode the resources. The benefit of representing with 
RDF is that the information maps directly and 
unambiguously to a decentralized model. Unlike 
traditional database systems, RDF does not require all 
annotations of a resource stored on one server. The 
ability for distributed allocation of metadata makes 
RDF very suitable for the construction of distributed 
repositories. The basic building block of RDF is the 
triple which includes a subject, a predicate and an 
object. The following example shows a fragment of the 
metadata of an electronic book. The definition is 
derived from the “Dublin Core” metadata definition 
[23].

<?xml version="1.0"?> 
<rdf:RDF 
xmlns:rdf=http://www.w3.org/1999/02/22-rdf-syntax-
ns#” 
xmlns:dc="http://purl.org/dc/elements/1.1/">  

<rdf:Description rdf:about="http://somewhere/Java 
programming langrage"> 
  <dc:title> Java programming </dc:title> 
  <dc:description>Java-Computer program 
language</dc:description> 
  <dc:creator>Ken Arnold</dc:creator> 
  <dc:date>2002-09-01</dc:date> 
  <dc:type> program language </dc:type> 
  <dc:format>text/html</dc:format> 
  <dc:language>en</dc:language> 
</rdf:Description> 
</rdf:RDF> 

Figure 1. Resources representation with RDF syntax 

With RDF representation, the resource providers can 
give resources better descriptions and the resource 
requesters can customize their requirements to make 
queries more precise and flexible.  

3. Semantic routing scheme 

3.1. Frame work 

The framework utilizes P2P technology and 
hierarchical structure to improve the scalability and 
robustness. Nodes are grouped into clusters according 
to certain criteria, such as mutual interest, 
administrative domain and network distance. In this 
paper, nodes are clustered according to their registered 
interests. Those sharing the same interest are in the 
same cluster. Therefore, most queries will be satisfied 
within the cluster. Nodes in the cluster build a semantic 
tree. Queries are forwarded along tree paths leading 
only to matching nodes. We utilize the Prinkey method 
[24] to create the tree structure. In the tree, every node 
has a local resource summary as well as aggregated 
summaries from children branches. The query routing 
is based on these summaries. The main improvement of 
our scheme over the Prinkey scheme is the Bloom filter 
indexing method.  

The root node in every tree cluster has complete 
knowledge of the entire cluster. To share resources 
among clusters, root nodes connect with each other 
forming an overlay network on top of the clusters. 
Queries cannot be satisfied in the local cluster should 
be forwarded to other clusters through the root nodes. 
The overlay forwarding strategy has a great impact on 
grids efficiency and scalability. We use semantic 
routing to forward the query to nodes which are most 
likely able to satisfy the query. Every root node 
computes the overlay routing table according to its 
knowledge of the local cluster as well as its knowledge 
of neighbor clusters. They exchange routing info by 
using a protocol similar to distance vector based IP 
routing protocol, but with summarized resource 
information inside. In this way, queries will be 
forwarded to the nearest resource provider. This 
hierarchical structure can achieve a balance between 
the inherent efficiency of centralized search, and 
scalability offered by distributed search. Figure 2 
illustrates the resource discovery architecture. 

Tree

Overlay

 Figure 2. System architecture 
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3.2. Resource summarization 

To make the routing “smarter”, we should utilize the 
prior knowledge of where desired objects are likely to 
be to route the query. The RDF resource index is such 
kind of knowledge. However, exchanging the RDF 
indices between nodes is almost impossible, because 
each node may maintain a great amount of resources. 
Our strategy is summarizing the resource metadata. 
Summarization can not only save bandwidth and 
storage for transmitting and storing the metadata, but 
also can decrease the query lookup time, because 
summaries can be stored in the main memory. We use 
Bloom filter to summarize the resource info.  

To map a resource to the Bloom filter bitmap, we 
hash all attribute combinations to the bitmap. For 
example, a resource R with 4 attributes {a,b,c,d}, can 
potentially satisfy 15 queries: {a}, {b}, {c}, {d}, {ab},
{ac}, {ad}, {bc}, {bd}, {cd}, {abc}, {abd}, {acd}, {bcd}, 
{abcd}. Therefore, all these 15 combinations should be 
put into the bitmap. While, a resource with n attributes 
may have 2n-1 combinations. When n is large, that 
could be a huge number. To solve this problem, the 
number of combinations should be restricted. We set a 
maximal length m (m<=n), and only hash those 
combinations, whose lengths are not greater than m, to 
the bitmap. For resource R in the above example, if we 
set m as 2, we only map 10 combinations ({a}, {b}, {c},
{d}, {ab}, {ac}, {ad}, {bc}, {bd}, {cd}) out of the 15 
combinations to the bitmap. To determine if a query 
can be satisfied by resources mapped into the bitmap, 
we check all of the query’s constraint combinations 
length up to m. If any of them is not in the bitmap, then 
certainly the query cannot be matched. Otherwise we 
conjecture that the query can be matched, although 
there is a certain probability of “false positive.” 
Restricting the attribute concatenation length reduces 
the complexity of summarization, but it introduces 
more false positives. Fortunately, we do not need the 
strict accuracy for the summarization, because finally 
we will check the accurate RDF to confirm the match. 

3.3. Intra-cluster Routing 

3.3.1. Overview. Since any connected graph can be 
represented by a tree, tree is a natural representation of 
connected graph. We adopt Prinky’s tree structure[24] 
as a basic structure for intra-cluster routing, but 
improve its approximate indexing scheme. In our tree 
structure, every non-leaf node maintains a routing table 
including several Bloom filter bitmaps: one bitmap for 
local resource and the rest others for children. Each 
node sends the merged bitmap to its parent. So every 

internal node has a summarized view of a sub-tree 
rooted by itself, and the root has a summarized view of 
the entire tree. When a node receives a query, it checks 
its routing table. If it finds match in local bitmap, it just 
gives a positive reply. If it finds match from a child’s 
bitmap, it forwards the query to that child. If neither of 
them matches the query, and if the query is not 
received from its parent, the query will be sent to its 
parent. The parent will perform the same procedure. 
This routing scheme forwards query only to nodes 
lying on branches which potentially can satisfy the 
query and avoids sending the query to other nodes.  
3.3.2. Routing example. Figure 3 illustrates the index 
aggregating and query forwarding process. In this 
example, the Bloom bitmap size is 12 bits and 2 hash 
functions (H1,H2) are used to map a resource. In reality 
the size of the bitmap is much larger, and the number 
of hash functions is always more. In the example, node 
B’s routing table includes a local bitmaps, and two 
children (D and E) bitmaps. A local resource z is 
mapped to two positions: 2 and 3 in the bitmap 
(H1(z)=2, H2(z)=3). So in B’s local bitmap, B2=1, 
B3=1. B merges these three bitmaps by bitwise OR, and 
sends the merged bitmap to its parent A. The merged 
bitmap represents all resources from B and its 
descendants. Now suppose D receives a query for 
resource m. It first uses the two hash functions H1 and 
H2 hashing m to 2 bits: 5 and 10 in the bitmap. Because 
D cannot find match locally, it forwards the query to its 
parent B. B cannot find match in its routing table either. 
So B forwards the query to its parent A. A finds match 
in child C’s bitmap (because C5=C10=1), then A
forwards the query to C. Similarly C finds match from 
child F, so the query is then forwarded to F. Finally F
finds match in its local bitmap and it will check its 
RDF database to further verify the query.  
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Figure 3. Tree routing 

3.3.3. False positive. As mentioned, the Bloom filter 
index may raise false positives and the aggregation of 
index may incur more of them. Therefore, the index is 
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only an approximation of the resource. It may lead 
queries to nodes or branches that do not contain 
relevant information. Luckily, this will not affect the 
fidelity of the final query result, because node that 
finally receives the routed query will check the accurate 
RDF database to further verify it. As long as the false 
positive rate is small, queries will be routed along 
nearly optimal paths and most of the nodes that finally 
receive queries will in fact contain relevant information.  

3.4. Inter-cluster Routing 

3.4.1. Overview. To share resource grid wide, we need 
route queries among clusters. Because the root of every 
cluster has a summarized index of the entire cluster, 
naturally it becomes a representative of the cluster. 
Root nodes connect with each other forming an overlay 
network. We call the overlay routing algorithm: 
resource-distance-vector (RDV) routing. It utilizes the 
distance vector to route queries to the nearest matching 
nodes. Every node (the root node) in the overlay 
network maintains a resource routing table. It utilizes 
the Bloom filter index, and adds distance information 
into the index. Nodes maintain resource information 
sent by their neighbors and update relevant entries in 
their routing tables. The distance information is 
updated from node to node and plus one whenever 
passing through a node. We set a TTL, which we call 
Radius, to limit the number of hops the resource 
information can travel. When a node receives a query 
request, the algorithm will choose the shortest route to 
forward the query to. If there is more than one provider 
supplying the same resource, with high probability, the 
algorithm will forward the request to the nearest one. 

Figure 4. RDV routing 

3.4.2. Routing table. Each node maintains a resource 
routing table which contains local and neighbor 
resource vectors. All the vectors are implemented with 
Bloom filters. Besides resource info, the vector also 
records the distance (in terms of number of hops) to the 
resource. So the Bloom index is now a vector of 
numbers instead of a vector of bits. Each number is the 
minimum distance to a matching resource. Figure 4 
illustrates the formation of routing tables.  In this 
example, we use 3 hash functions to map a resource to 
the vector. Node A’s local resource p is mapped to 3 
numbers: 1, 2, and 9, so in A’s local vector, those 3 
positions are set 1, representing 1 hop to the resource. 
(We assume the root node of the cluster is 1 hop away 
to any resources in that cluster). In A’s routing table, 
neighbor B’s vector has 3 elements B4, B3, B5 set to 2.
That means resource y (4,3,5) is 2 hops away from A.

Node A merges all vectors in its routing table and 
sends the merged vector to each of its neighbors. The 
problem is how to decide the distance information in 
the merged vector. The principle is: if there are 
multiple paths to a resource, the node should always 
choose the shortest one. Assume A’s combined vector 
is X. So the value of X’s ith element is the minimal 
value of all vectors’ ith element. (Note: 0 represents 
in figure 4). For example, X3 = min(A3,B3,E3) = 
min( ,2,3) = 2. By doing this, hash positions related to 
a resource may have different values. For example, in 
A’s combined vector X, to check a resource x (1,3,10),
we find X1=1, X3=2, X10=3. According to the 
aggregation process, it is not difficult to see that the 
maximal value represents the real distance. Therefore, 
the distance from node A to resource x is 3. The 
combined vector is then added by 1 to every element 
and sent to all of A’s neighbors. We set a hop count, 
which we call Radius, to limit how far the resource info 
can travel. When resource info passes as many as 
Radius hops, it should not be forwarded any more. In 
figure 4 Radius is set to 5. So when Xi>5 Xi is set to 0.
Through the aggregated vector, neighbors of A would 
know what resources are available from node A, and 
how far they are.  

Each node sends updates to and receives updates 
from its directly connected neighbors. When a node 
receives routing information from a neighbor, it 
updates its local table if the neighbor suggests a 
“better” route than what it already knew about. 
Eventually the table will stabilize and all resources 
within the Radius range will be known. Nodes need 
periodically “ping” neighboring nodes to make sure 
they are still alive. In order to reduce the overhead for 
transmitting the routing information, nodes in the 
overlay network use a soft state routing update, that is, 
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periodically exchanging their resource info. At any 
given time, the resource routing information may 
potentially be stale or inconsistent. While, as we 
mentioned, the algorithm dose not need the routing 
table to be strictly correct, and the approximation will 
not affect the system’s fidelity. 
3.4.3. Query forwarding. If a node cannot match a 
query locally, it will choose a “right” neighbor to 
forward the query to. A query may be transferred by 
several hops until it arrives at the matching node or the 
TTL expires. In figure 4, node C receives a request for 
resource x (1,3,10). It cannot find match in its local 
vector. Then it checks its neighbor vector B and finds 
B1=3, B3=2, B10=4. As mentioned, the maximum value 
of B1, B3 and B10 represents the distance to resource x,
thus 4 hops are needed to locate x through B.  Then the 
request is forwarded to B. When B receives the query, 
it looks up its routing table and finds 3 different paths 
to x: path through neighbor A with 4 hops (A1=2, A3=3, 
A10=4); through C with 5 hops (C1=4, C3=3, C10=5);
through E with 3 hops (E1=3, E3=3, E10=3). So the 
shortest distance to resource x is 3 and through 
neighbor E. Therefore the query is sent to E. Similarly, 
E forwards it to D. D finds match in its local vector, 
and then it checks its RDF database to further confirm 
it.

4. Experiments 

To better understand the system’s performance, we 
evaluate the performance of its three key components: 
the multi-attribute Bloom filter, the intra-cluster routing 
algorithm, and the inter-cluster routing algorithm. Then 
we integrate them as a complete system and test its 
efficiency and scalability.  

To become good summarization, the Bloom filter 
index should be succinct while accurate enough. We 
measure the Bloom filter performance in the metric of 
false positive. In this experiment, there are 1000 
resources. Every resource has at most 20 attributes. It is 
difficult to emulate the real query pattern. So we made 
up queries by randomly picking attributes from all 
possible values and concatenating them together. Half 
of the queries should be satisfied with the resources. 
MD5 is utilized as the hash function and the number of 
hush functions is 4. The maximal attribute 
concatenation length is 3. Figure 5 illustrates the 
relationship of false positive and Bloom filter size. 
From the graph, we see that there is a tradeoff between 
the false positive and the Bloom filter size: the larger 
the bitmap the lower the false positive rate. As long as 
the Bloom filter size is big enough, the percentage of 
false positive can be very low. Therefore, we can use 

Bloom filters to save storage with just slight risk of 
false positives.  
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To test the effectiveness and the cost of the routing 
scheme, we measured the intra-cluster routing and the 
inter-cluster routing respectively with simulation. The 
simulator models the physical network as a graph 
where each node corresponds to a peer. A number of 
RDF documents and a Bloom filter based routing table 
are associated with each node. The resources are 
randomly distributed to all nodes in the network with 
duplication rate 35%. Every node may have 1 to 100 
resources. To make comparisons, we simulate our 
routing algorithms in conjunction with two well known 
algorithms: Gnutella flooding and Random Walk.  

First we compare the intra-cluster tree routing with 
the other two routing algorithms in two important 
performance metrics: the number of messages and the 
routing hops to resolve a query. To guarantee every 
query can finally be satisfied we set the query TTL as 
infinity. From the results in figure 6 and figure 7, it is 
clear that the intra-cluster tree routing algorithm has 
better performance on both metrics than either flooding 
or random work does. 
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We also simulated the inter-cluster routing 
algorithm: the RDV routing algorithm. The Radius of 
the RDV algorithm is set to 3, and the average node 
degree (number of neighbors) is 6. The resource 
parameters are configured similar to the intra-cluster 
routing. Figure 8 compares the number of messages 
created to forward a query by each of the three routing 
algorithms. We can see RDV algorithm created much 
fewer messages than the other two algorithms. Figure 9 
illustrates the relation of the query success rate with the 
query TTL.  
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Figure 10 shows the influence of the Radius to the 
query overhead. Initially, increasing the Radius will 
increase the nodes’ knowledge of the network, thus 
improving the query performance. When the Radius
grows to 4, nodes almost have a complete knowledge 
of the network, then further increasing the Radius will 
not bring more benefit.  

Finally, we integrate the two phases of the routing 
together and test them as a complete system. The 
network size is fixed to 2000 nodes. Nodes are 
randomly grouped into clusters and the size of a cluster 
is from 30 to 200 nodes. Figure 11 compares the query 
overhead to achieve certain successful hits by each of 

the three routing algorithms. Obviously, our 
hierarchical routing algorithm dramatically decreases 
the query overhead. In this experiment, we randomly 
cluster nodes. If we cluster them according to interest, 
the system can achieve better performance. Figure 12 
compares the performance of different clustering 
strategies. It is clear that the interest-based clustering 
performs better than the random clustering. That is 
because nodes sharing the same interest are in the same 
cluster, then most of the queries can be satisfied within 
the cluster.  
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5. Conclusion 

As more and more resources appear in grids, there is 
an increasing need to discover these resources 
effectively and efficiently. In this paper, we present a 
novel design for resource discovery in large scale grids. 
It is based on the P2P model and it provides complex 
query interface. The system is designed to scale to 
large number of groups, large group size and to support 
complex resource query.  

The system supports rich resource description and 
query by encoding the resource and query with RDF. 
Therefore, the resource providers can give resources 
better descriptions and the resource requesters can 
customize their requirements to make the query more 
powerful. To improve the system scalability, nodes are 
grouped into clusters. Two efficient routing algorithms: 
the intra-cluster routing and the inter-cluster routing are 
proposed. Both routing algorithms utilize Bloom filters 
as the basic data structure to aggregate resource 
information and help route the queries. The intelligent 
routing scheme is able to route queries to the nodes 
where the target resources are located, and to avoid 
flooding the queries to all other irrelevant nodes. The 
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system has been evaluated by simulations. The 
experiment results prove that the routing schemes are 
efficient and scalable. 
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