
An Efficient Clustered Architecture for P2P Networks

Juan Li Son Vuong

Computer Science Department, University of British Columbia

{juanli, vuong}@cs.ubc.ca

Abstract

Peer-to-peer (P2P) computing offers many attractive

features, such as self-organization, load-balancing,

availability, fault tolerance, and anonymity. However, it

also faces some serious challenges. In this paper, we

propose an Efficient Clustered Super-Peer P2P

architecture (ECSP) to overcome the scalability and

efficiency problems of existing unstructured P2P system.

With ECSP, peers are grouped into clusters according to

their topological proximity, and super-peers are selected

from regular peers to act as cluster leaders and service

providers. These super-peers are also connected to each

other, forming a backbone overlay network operating as

a distinct, yet integrated, application. To maintain the

dynamically adaptive overlay network and to manage the

routing on it, we propose an application level

broadcasting protocol: Efa. Applying only a small

amount of information about the topology of a network,

Efa is as simple as flooding, a conventional method used

in unstructured P2P systems. By eliminating many

duplicated messages, Efa is much more efficient and

scalable than flooding, and furthermore, it is completely

decentralized and self-organized. Our experimental

results prove that ESCP architecture, combined with the

super-peer backbone protocol, can generate impressive

levels of performance and scalability.

1. Introduction

In very large networks, it is not always easy to find

desired resources. For any given system, the efficiency of

any search technique depends on the needs of the

application. Currently, there are two types of P2P lookup

services widely used for decentralized P2P systems [2]:

structured searching mechanism and unstructured

searching mechanism.

Structured systems such as Tapestry [6], Pastry [4],

Chord [5], and CAN [3] are designed for applications

running on well-organized networks, where availability

and persistence can be guaranteed. In such systems,

queries follow well-defined paths from a querying node

to a destination node that holds the index entries

pertaining to the query. These systems are scalable and

efficient, and they guarantee that content can be located

within a bounded number of hops. To achieve this

performance level, the systems have to control data

placement and topology tightly within their networks.

However, this results in several limitations: first, they

require stringent care in data placement and the

deployment of network topology. Thus, the methods they

use are not applicable to the typical Internet

environment, where users are widely distributed and

come from non-cooperating organizations. Second, these

systems can only support search-by-identifiers and lack

the flexibility of keyword searching, a useful operation

for finding content without knowing the exact name of

the object sought. Third, these systems offer only file

level sharing, and do not share particular data from

within the files.

Unstructured systems like Gnutella [1] and FastTrack

[7] are designed more specifically for the heterogeneous

Internet environment, where the nodes’ persistence and

availability are not guaranteed. Under these conditions, it

is impossible to control data placement and to maintain

strict constraints on network topology, as structured

applications require. Currently, these systems are widely

deployed in real life.

The present paper focuses on building a P2P lookup

application for integration into arbitrary dynamic

networks that cannot be controlled. We thus concentrate

on unstructured P2P systems, which support many

desirable properties such as simplicity, robustness, low

requirement for network topology and supporting

keyword searching. Unstructured systems operate under a

different set of constraints than those faced by techniques

developed for structured systems. In unstructured

systems, a query is answered by flooding the entire

network and searching every node. Flooding on every

request is clearly not scalable, and it has to be curtailed at

some point, therefore it may fail to find content that is

actually in the system. Furthermore, a network that uses

Proceedings of the 18th International Conference on Advanced Information Networking and Application (AINA’04)
0-7695-2051-0/04 $ 20.00 © 2004 IEEE

flooding might be bombarded with excess messages and

activity, and at certain points it might fail. To address

these problems, we propose a hierarchical structure and

an efficient routing strategy.

2. Multi-tier architecture

In a network, participating peers exhibit considerable

heterogeneity in terms of storage capacity, processing

power, bandwidth and online availability. For the best

design, we should take advantage of this heterogeneity

and assign greater responsibility to the peers that are

capable of handling it. ECSP utilizes these differences in

a hierarchical P2P design, in which peers with different

capabilities take different roles. Specifically, peers in the

system act as client peers and super-peers in different

hierarchies.

Well-known registration servers

SP1

SPn
SP4

SP2

SP3

SP2

Super-peer backbone

Figure 1: System architecture
Figure 1 illustrates the hierarchical structure, in which

peers are grouped together if they are topologically close.

Peers with more resources in the cluster can be selected

as a super-peer. Super-peers act as local search hubs,

building indices of the content files shared by each peer

connected to them, and proxying search requests on

behalf of these peers. Desirable properties for super-peers

include accessibility to other peers, bandwidth and

processing capacity. Super-peers with these

characteristics are connected with each other and

organized amongst themselves into a backbone overlay

network on the super-peer tier. Then, an application

level broadcasting protocol is designed to perform

distributed lookup services on top of this overlay

network. A unique well-known registration server is

responsible for maintaining user registrations, logging

users into the system, and bootstrapping the peer

discovery process.

The hierarchical structure of this system combines

advantages of both centralized and pure P2P systems.

The introduction of a new level of hierarchy in the

system increases the scale and speed of query lookup and

forwarding processes. Moreover, the hierarchical

structure is more stable because clusters join and leave

the network less frequently than individual peers. Finally,

our super-peer overlay routing protocol reduces the

workload of super-peers significantly by avoiding many

flooding duplications.

2.1. Well-known server

Client Peer Register

Nearest Peer

Algorithm

Super Peers

in the

System

Super Peer Register

Topology and

Nearest Peer

Algorithm

Client Peer

Register

Super Peer List

Super Peer

Register

Neighbor List

Well-known Registration Server

Figure 2 Well-known registration server structure

In the networks analyzed for the current study, well-

known registration servers (Figure 2) supply yellow page

services to all nodes in a network. Registration servers

maintain databases of all active super-peers in the

system, and when a new super-peer is added to the

network, a new entry is generated in the registration

server’s super-peer database. Whenever a new peer joins

the system, it first contacts the registration server to get a

super-peer list. To provide scalability and load balancing,

some hierarchical registration servers are essential,

which contain replicas of the active registration server.

Replica registration servers become active only when the

main registration server is not able to provide service to

nodes in the system, for example during busy periods or

failing times.

2.2. Super-peers

Super Peer

Peer

Content

Index

Routing

Table
Server In terface

Join

Q uery Forward

Algorithm

Client Peer

U pdate

L eave

Query

Neighbor

Interface

Join

Probe

Update

Query

Super Peer

Figure Super-peer structure
Super-peers are selected from regular peers according

to their computing resources and bandwidth capabilities,

the volume of files they store, and the behavior of being

seldom offline. Super-peers act as cluster leaders and

Proceedings of the 18th International Conference on Advanced Information Networking and Application (AINA’04)
0-7695-2051-0/04 $ 20.00 © 2004 IEEE

service providers for a subset of client peers, providing

four basic services to the clients: join, update, leave and

query.

In the join process, client peers upload metadata

describing the property of the content they will share

with the network. In addition, the super-peer also stores

details related to the client peer’s connection, such as the

IP address, bandwidth, and processing power of the

client. After the join process is completed, the client peer

is ready to query content in the network, and to allow

other client peers to download content from it. When a

client peer leaves the system, the super-peer removes that

client peer’s metadata from the index library. If a client

peer ever updates its content data, it sends an update

message to the super-peer, and the super-peer updates its

index accordingly. When a super-peer receives a query

from its client peer, it matches what is in its index library

and forwards the query to its neighbors, who in turn

forward it to some of their neighbors, according to the

super-peer overlay network routing algorithm Efa. After

results (or time-outs and error messages) are received

from all of its neighbors, the super-peer sends the

aggregated result to the requesting client peer.

As mentioned, super-peers are also connected with

each other to form an application-level overlay network.

The dynamic maintenance of the topology, and the

efficient locating of content within this overlay network

is described in the next section. Here, we note that super-

peers are not only cluster leaders for their client peers,

but also members of the super-peer overlay network.

Therefore they supply interfaces to both client peers and

to adjacent neighbor super-peers (Figure 3).

2.3. Client-peers

In the present paper, regular peers are referred to as

client peers to distinguish them from super-peers. In fact,

they act as both clients and servers: they send requests to

super-peers like clients, and receive other peers’ file

download requests like servers. While providing this

functionality, client peers can offer easy-to-use interfaces,

through which users can connect to the system, discover

resources in the network and finally obtain the required

content. To accomplish this, a client peer acts as both an

FTP client and an FTP server. After the client peer joins

the system and uploads its content metadata to its local

super-peer, it initiates an FTP server on a well-known

port and waits for other peers’ download requests. After a

client peer locates content through super-peers, it opens a

connection and downloads directly from the node where

the content is located.

2.4. Backup peers
The introduction of one more level of hierarchy makes

the system more efficient, but the super-peer becomes a

potential area of single-point failure for its cluster. When

the super-peer fails or leaves the system, the entire

cluster content index information is lost. To increase the

reliability of the system, we introduce a backup peer as

redundancy for the super-peer. Thus, every cluster has a

super-peer acting as a cluster leader and a backup peer

acting as a redundancy server. The backup peers are

selected from the client peers too. They copy the super-

peer’s index table periodically, and when a super-peer

fails or leaves the network, its backup peer replaces it and

the cluster selects a new backup peer for redundancy. The

possibility of both a super-peer and its backup peer

failing simultaneously is much smaller than failure of the

super-peer alone, and thus the introduction of a backup

peer greatly improves a system’s robustness.

Furthermore, a backup peer is dynamically selected from

client peers in the cluster, so there is no extra burden for

the redundancy.

3. Backbone overlay routing

3.1. Algorithm description
 Our algorithm aims at suppressing flooding by

reducing the number of duplicated query messages. There

are many approaches to eliminating flooding, the most

popular of which uses tree-based broadcasting. In our

model, the number of participant nodes can be quite large

and users are widely distributed all over the Internet.

Therefore it is impossible to let every node know the

whole topology of the network. In addition, all tree-based

approaches require huge messaging overhead, associated

with construction and maintenance of the spanning tree.

However, in most P2P systems, participant nodes are

typically PCs at homes or offices with their own tasks,

and thus they cannot afford many resources for P2P

applications. In addition, they can be very dynamic, so

messages updating tree structures overwhelm the

network. In light of these considerations, our objective is

to use limited topology information and simple

computing to decrease the duplication queries created by

flooding.

In a well-connected network, several different paths

may exist to connect two particular nodes, which is the

reason that extensive duplications may be created by

flooding. If node v can anticipate that one of its

neighbors u, receives query messages from another path,

however, then v does not forward the query to u. To

achieve this type of anticipating, we use a rule directing

the nodes that duplicate and forward messages while we

Proceedings of the 18th International Conference on Advanced Information Networking and Application (AINA’04)
0-7695-2051-0/04 $ 20.00 © 2004 IEEE

keep track of topology information to compute the

forwarding set. As the later experiment shows, although

we cannot avoid all duplications, we can reduce much

duplication for most widely used network topologies.

The following definitions are used in the algorithm

and discussed later in this chapter.

• id(v): Node v’s unique id.

• N(v): Neighbor set of .v

• NN(v): Neighbor’s neighbor set of .v

• fr(u,v): v is the current node, u is the node which

forwards the query to v. fr(u,v) is the forward reaching

set of u for the current node v, that is, the immediate

(no more than 2 hops away) set of nodes reached by

the local flooding source u.

• routing(u,v): For local source u, current node v’s

routing set. For example, if u forwards the query

package to v, the set of nodes v forwards is decided by

routing(u, v).

The algorithm in figure 4 describes the routing

process for the current node, v, when it receives a query

from its neighbor, u.

forward(u,v)

/*when node v receives forwarded query from its neighbor

u, this algorithm decides how v forwards this query */

If the received query has been received before

discard it

else

 if u is null /* v is the node which initiates the query*/

 forward the query to N(v)

 else

 forward the query to routing(u,v)

(a)

fr(u,v) = N(u) ∪ { all v’ in NN(u) | id(v’)< id(v)}

routing(u,v) = all v’ in N(v), such that

1. v’∉fr(u,v) AND

2. {N(v’) ∩ fr(u,v)= ∅} OR {N(v’) ∩ fr(u,v) =A

AND (∀ v’’ ∈ A AND id(v’’)>id(v)) }

(b)

Figure 4: Routing algorithm, where (a) is the routing
process, and (b) is the algorithm to compute fr(u,v)
and routing(u,v).

We use an example to explain the algorithm. Figure 5

depicts a simple network topology, where N5 is the

current node. In the case of flooding, when N5 receives

message sent from N1, N5 would forward the message to

all of its neighbors except N1. Therefore, N5 forwards the

messages to N3, N6, and N8. However, if it uses Efa, N5

does not need to forward the message to all of its

neighbors, but only to those that may not be reached by

N1. Messages from N1 reach all neighbors of N1, which

are N2 and N7. Because id(N2) is smaller than id(N5),

the message also reaches N2’s neighbors, N3 and N4.

Finally, we get: fr(N1,N5)={N2, N7, N3, N4}. Therefore,

when N5 receives a message from N1, it does not forward

the message to its neighbor N3, because N3 is in the set

fr(N1, N5). N5 does not forward the message to N6

either, because N6’s neighbor N4 is in fr (N1, N5), and id

(N4) is smaller than id (N5). So at last, N5 only forwards

the message to N8.

Figure 5: A simple network topology

3.2. Algorithm correctness

Assuming the network is connected, the protocol

described above guarantees a query message be

forwarded to all nodes in the network. For an arbitrary

node v, which receives forwarding query from its

neighbor node u, the entry (u,v) in the routing table of v

decides which neighbors the query would be forwarded.

And the entries in the routing table is computed with the

following principle: If v’s neighbor x ∈ fr(u, v), then v

need not forward the query to x, because v knows x has

been reached by u. If x∉ fr(u), but x’s neighbor y ∈ fr(u),

we compare the id of y and v, if v’s id is smaller, then v

forward the query to u, otherwise, v leave the query for y

that has a smaller id to forward the query. Therefore, for

an arbitrary neighbor of v, it would be reached either by v

or by other nodes in u’s reaching set, whose id is smaller

than v’s. Consequently, all nodes in the network will be

reached by the forwarding protocol.

4. Experiments

We have performed two kinds of experiments to

evaluate the system. First, we designed a simulator to

evaluate the performance and scalability of the routing

protocol, because it is impossible to run the system in an

Internet-based network with millions of computers.

Second, we installed our P2P software on the LAN of the

Computer Science Department of UBC to test and

evaluate the real system.

Proceedings of the 18th International Conference on Advanced Information Networking and Application (AINA’04)
0-7695-2051-0/04 $ 20.00 © 2004 IEEE

4.1. Routing protocol test

In order to evaluate the super-peer level overlay

network’s discovery mechanisms, we have developed an

event-based simulator in Java. The simulator can

simulate the application-level broadcasting and query

searching processes with different routing algorithms and

network topologies.

Minimizing the system overhead is an important

objective for our algorithm. In our experiments, we

define the overhead as the duplicated messages on the

network. Figures 6 compare the system overhead when

using Efa with the overhead when using simple flooding.

Our experiments run on three different network

topologies: grid topology, random topology and Barábasi-

Albert random topology [8]. In the simulation, we set the

TTL to “unlimited,” to make the broadcast reach every

node in the network. For each topology, we vary the

network size and repeat the tests ten times, then compute

the average results. The results reveal that Efa greatly

reduces network overhead for all three topologies,

compared with flooding.

Figure 6: System overhead vs. network size for
different network topology: (a): grid topology, (b):
random topology, (c): Barábasi-Albert random
topology

Figure 7 depicts the relationship of network

duplication ratios and network average degrees. The

experiment is performed on a random topology network

with 3000 nodes. The network duplications increase with

the network average degree in the flooding situation. For

Efa, when network average degree grows to some extent,

the duplication ratio begins to decrease with the increase

of average node degrees.

Figure 7 Degree vs. duplication

Figure 8 Success rate vs. system overhead

The experiment in Figure 8 is performed on the

random topology with 3000 nodes and an average degree

of 5. The content is replicated at 0.3% of the randomly

selected nodes in the network. The result in Figure 9

identifies the relationship of query success probability to

the number of messages produced in the system.

All experiments performed on different network

environments demonstrate that compared with simple

flooding, Efa reduces many overheads of individual

nodes as well as the loads of the whole network. It

achieves better performance and scalability than flooding

does, especially when the network is well connected or

the network size is large.

4.2. Real system test

The experiment environment is made up of 16 PCs

with Intel Pentium 1.004 GHz processor and 256M of

RAM, and all the PCs are running the Red Hat Linux 9

operating system. There are a total of 50 different files in

the system. Every peer maintains 20 files and each of the

files is around 5KB. To test our architecture, we

randomly choose one to serve as a well-known

registration server and the other 15 PCs to serve as peers.

The 15 peers are grouped into three clusters. In every

cluster, a peer also acts as a super-peer. To evaluate the

system performance, we compare it with a Gnutella

system. The topology of Gnutella is randomly generated

with an average degree of 4. In both systems, to generate

the network traffic peers send queries every two seconds.

Proceedings of the 18th International Conference on Advanced Information Networking and Application (AINA’04)
0-7695-2051-0/04 $ 20.00 © 2004 IEEE

Because the experiments are conducted on a LAN, the

transmission time between two nodes is too short to

reflect the real Internet environment, therefore we add

0.1 second delay for every transition between two nodes.

Figure 9 Hit rates vs. system overhead

Figure 10 Time vs. system overhead

Figure 9 shows the query hits and number of messages

needed. To attain the same number of successful query

hits, ECSP sends significantly fewer messages than

Gnutella does.

Figure 10 reviews the relationship of time consumed

and system overhead: for any time period, our system

creates less traffic than Gnutella does. Therefore, our

system accrues lower costs than Gnutella.

Figure 11 Time vs. query hits
Figures 11 and 12 compare ECSP and Gnutella in

terms of query hits and completion time. Two

observations can be drawn from these comparisons: as

Figure 12 shows, our system uses much less time to

finish the same amount of queries; with the same time

limit, our system can finish more queries (Figure 11).

In sum, all of our experiments prove that the ECSP

structure and the Efa backbone routing protocol

dramatically decrease the cost of queries without

decreasing the ability to satisfy queries, compared with

Gnutella and simple flooding.

Figure 12 Query hits vs. completion time

5. Conclusions

In this paper, we investigate P2P systems currently in

use, primarily on decentralized, unstructured systems.

Two major deficiencies of unstructured P2P networks are

addressed: scalability and efficient search mechanisms.

Consequent to our observations, we propose a

hierarchical-based super-peer structure, ECSP.

Experiments are performed both with a real network

environment and with simulation tools. The experimental

results demonstrate that the ESCP architecture and the

overlay broadcasting algorithm achieve good

performance and scalability, and they can be used to

construct powerful infrastructures for very large scale,

unstructured P2P environments.

.

6. References

[1]] Gnutella website. http://gnutella.wego.com/

[2] Q. Lv, P. Cao, E. Cohen, K. Li and S. Shenker “Search and

Replication in Unstructured Peer-to-Peer Networks,” in

Sigmetrics, June 2002.

[3] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S.

Shenker. “A Scalable Content-Addressable Network:, In ACM

SIGCOMM, pages161-172, August 2001.

[4] A. Rowstron and P. Druschel. “Pastry: Scalable, Distributed

Object Location and Routing for Large-Scale Peer-to-Peer

Systems,” Proceedings of the IFIP/ACM International

Conference on Distributed Systems Platforms (Middleware

2001), November.

[5] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and

H.Balakrishnan. “Chord: A Scalable Peer-to-Peer Lookup

Service for Internet Applications,” In ACM SIGCOMM, pages

149-160,August 2001.

[6] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. “Tapestry:

An Infrastructure for Fault-Tolerant Wide-Area Location and

Routing,” Technical Report UCB/CSD-01-1141, April 2000.

[7] FastTrack website http://www.fasttrack.nu/

[8] A.L. Barábasi and R. Albert, “Emergence of Scaling in

Random Networks”. Science, pages 509-512, October 1999.

Proceedings of the 18th International Conference on Advanced Information Networking and Application (AINA’04)
0-7695-2051-0/04 $ 20.00 © 2004 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

