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Abstract. Locating desirable resources and information from a large-scale 
distributed system such as P2P system and grid is a very important issue. 
However, the distributed, heterogeneous, and unstructured nature of the system 
makes this issue very challenging. In this paper, we propose Self-Organized 
Overlay Network (SOON), an unstructured P2P overlay architecture, to 
facilitate sharing and searching semantically heterogeneous contents. In 
particular, we have proposed a semantics-aware topology construction method 
to group nodes sharing similar semantics together to create small-worlds. For 
this purpose, we have designed an algorithm to extract a node’s ontology 
summary and use that summary to compute the semantic similarity between 
nodes. With this semantic similarity defined, nodes are grouped accordingly, 
forming semantic virtual domains and clusters. Resource information 
integration and searching can be efficiently performed on top of this topology. 

Keywords: Overlay network, P2P system, Semantic Web, topology. 

1   Introduction 

A widely-held belief pertaining to social networks is that any two people in the world 
are connected via a chain of six acquaintances (six-degrees of separation) [1]. The 
quantitative study of the phenomenon started with Milgram’s experiments [2]. 
Milgram’s experiments illustrated that individuals with only local knowledge of the 
network (i.e., their immediate acquaintances) may successfully construct acquaintance 
chains of short length, leading to networks with “small-world” characteristics. In such 
a network, a query can be forwarded along acquaintance chains taking it closer to the 
destination. Randomized network constructions that model the small-world 
phenomenon have recently received considerable attention. To model the routing 
aspects of the small-world phenomenon, Kleinberg constructed a family of random 
graphs [3]. He considered a 2D n × n grid with n2 nodes. Each node is equipped with 
a small set of “local” contacts and one “remote” contact drawn from a harmonic 
distribution. With greedy routing, the path-length between any pair of nodes is 
O(log2n) hops, with high probability. 

Small-world networks exhibit special properties, namely, a small average diameter 
and a high degree of clustering. A small diameter corresponds to a small separation 
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between peers, while high clustering signals tight communities. Small-world graphs 
contain inherent community structure, where similar nodes are grouped together in 
some meaningful way. Intuitively, a network satisfying the small-world properties 
would allow peers to reach each other via short paths while maximizing the efficiency 
of communication within the clustered communities.  

We draw inspiration from small-world networks and organize nodes in our system 
to form a small-world topology, particularly from a semantic perspective. Our 
objective is to make the system’s dynamic topology match the semantic clustering of 
peers, i.e., there is a high degree of semantic similarity between peers within the 
clustered community; this would allow queries to quickly propagate among relevant 
peers as soon as one of them is reached.  

In our overlay network, SOON, peers use their ontology summary to represent 
their expertise. Unlike most existing systems, SOON does not assume a global 
ontology but heterogeneous ontologies. We have designed a novel algorithm to 
compute the semantic similarity between two nodes in the network; then we use the 
semantic similarity as the metric to organize the network topology. Nodes are loosely 
structured in this network. Each of them keeps track of a set of neighbors and 
organizes these neighbors into a multi-resolution neighborhood according to their 
semantic similarities. This way, the overlay network topology is reconfigured with 
respect to peers’ semantic properties, and peers with similar ontologies are close to 
each other. Information can be integrated and discovered through nodes’ current 
neighbors, rather than by contacting some central hubs or virtual central hubs, such as 
Distributed Hash Tables (DHTs). This architecture combines the efficiency and 
scalability of structured overlay network with the connection flexibility of 
unstructured networks. It achieves full distribution, high scalability, and robustness. 

2   Semantic Metadata 

Metadata, the data about data, is a crucial element of a sharing and discovering 
infrastructure. An effective way of locating information of interest within large-scale 
information intensive environments is providing and managing metadata about the 
information. More important, metadata should be able to express the meaning of the 
information. An ontology, “a shared and common understanding of a domain that can 
be communicated between people and application systems”, as considered in modern 
knowledge engineering [4], is precisely intended to convey that kind of shared 
understanding. An ontological representation defines concepts and relationships. It 
sets the vocabulary, properties, and relationships for concepts. The elements 
accumulate more meaning by the relationships they hold and the potential inferences 
that can be made by those relationships. This capability of formal ontologies to 
convey relationships and axioms make them ideal vehicles for describing the 
vocabulary for metadata statements, providing a rich formal semantic structure for 
their interpretation. Therefore, we use ontologies to represent information metadata 
semantics. To cope with the openness and extensibility requirements, we adopt two 
W3C recommendations, the Resource Description Framework (RDF) and the Web 
Ontology Language (OWL), as our ontology languages.  
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In our system the ontology knowledge is represented by OWL-DL and is separated 
into two parts: the terminological box (T-Box) and the assertion box (A-Box) as 
defined in the description logic terminology. The T-Box is a finite set of 
terminological axioms, which includes all axioms for concept definition and 
descriptions of domain structure, for example a set of classes and properties. The A-
Box is a finite set of assertional axioms, which includes a set of axioms for the 
descriptions of concrete data and relations, for example, the instances of the classes 
defined in the T-Box. Generally speaking, there are many more A-Box instances than 
T-Box concepts. Separating the T-Box and A-Box enables different coarse-grained 
knowledge indexing, thus increasing the scalability of the system.  

3   Semantic Similarity 

To organize peers according to their semantic properties, we need a metric to measure 
peers’ ontology similarity. There has been extensive research [6, 7, 8] focusing on 
measuring the semantic similarity between two objects in the field of information 
retrieval and information integration. However their methods are very comprehensive 
and computationally expensive. In this paper, we propose a simple method to 
compute the semantic similarity between two peers; this can easily be replaced with 
other advanced functions for a complex system. 

3.1   Ontology Signature Set (OSS) 

To measure the semantic similarity between peers, we need to extract each peer’s 
semantic characteristics. The T-Box part of an ontology defines high-level concepts 
and their relationships like the schema of a database. It is a good abstraction of the 
ontology’s semantics and structure. Therefore, we use keywords of a nodes’ T-Box 
ontology as its ontology summary. For each node, we extract the class and property 
labels from its T-Box ontology, and put them into a set. This set is called this node’s 
Ontology Signature Set (OSS). We can measure the similarity of two ontologies by 
comparing the elements of their OSSs. However, a semantic meaning may be 
represented by different labels in different ontologies, while it is also possible that the 
same literal label in different ontologies means totally different things. Ontology 
comparison based on primitive OSSs may not yield satisfying results. One 
improvement is to extend each concept with its semantic meanings, so that 
semantically related concepts would have overlaps. Based on this intuition, we use the 
lexical database, WorldNet [5], to extend the OSS to include words which are 
semantically related to the concepts from the original set.  

WordNet is conceived as a machine-readable dictionary. It structures lexical 
information in terms of word meanings. WordNet maps word forms in word senses 
using the syntactic category as a parameter. Words of the same syntactic category that 
can be used to express the same meaning are grouped into a single synonym set, 
called synset. For example, the noun “computer” has a synset: {computer, data 
processor, electronic computer, information processing system}. An intuitive idea of 
extending an OSS is to extend each concept with its synset, i.e., its synonyms. In this 
way, two semantically related ontologies would have common WordNet terms in their 
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extended OSSs. Besides synonyms, WordNet also includes other lexical semantic 
relations, such as is-a, kind-of, part-of. Among these relations, is-a (represented by 
hyponym/hypernym in WordNet) is the most important relationship; it explains a 
concept by a more general concept. Therefore, we also extend OSS concepts with 
their hypernyms. 

After extension, an OSS may get a large number of synonyms for each concept. 
However, not all of these synonyms should be included in the set, because each 
concept may have many senses (meanings), and not all of them are related to the 
ontology context. Having unrelated senses in the OSS will diminish the accuracy of 
measuring the semantic similarity; thus we have to prune the expanded OSS to 
exclude those unrelated terms. A problem causing the ambiguity of concepts in OSS 
is that the extension does not make use of any relations in the ontology. Relations 
between concepts are important clues to infer the semantic meanings of concepts, and 
they should be considered when creating the OSS. Therefore, we utilize relations 
between the concepts in an ontology to further refine the semantic meaning of a 
particular concept. Only words with the most appropriate senses are added to the 
OSS. Since the dominant semantic relation in an ontology is the subsumption relation, 
we use the subsumption relation and the sense disambiguation information provided 
by WordNet to refine OSSs. It is based on a principle that a concept’s semantic 
meaning should be consistent with its super-class’s meaning. We use this principle to 
remove those inconsistent meanings. The refined algorithm to extend the primitive 
OSS is illustrated with the pseudocode in Fig. 1.  
 

/* This algorithm generates the refined ontology signature 
set OSS for an ontology, O */ 
 
createOss(Ontology O) 
{ 
   OSS={}; 
   for each c ∈ {concepts of ontology O} do 
        pc is parent concept of c 
        add c, pc to oss 
        for each Sc ∈ {senses of c} do 
     Hc={hypernyms of Sc} 
     for each Spc ∈ {senses of pc) do 
     if Hc ∩ Spc !=null  
        add Sc,Spc to OSS  
} 

Fig. 1. A refined algorithm to create the Ontology Signature Set of an ontology O 

The algorithm in Fig.1 creates the refined OSS of an ontology by adding the 
appropriate sense set of each ontology concept based on the sub-class/super-class 
relationships between the parent concepts and child concepts. For every concept in an 
ontology, we check each of its senses; if a sense’s hypernym has overlap with this 
concept’s parent’s senses, then we add this sense and the overlapped parent’s sense to 
the OSS set. In this way we can refine the OSS and reduce imprecision. Possible 
improvements could be obtained by using other relations in the ontology.  
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3.2   Peer Semantic Similarity 

To compare two ontologies, we define an ontology similarity function based on the 
refined Ontology Signature Set. The definition is based on Tversky’s “Ratio Model” 
[9] which is evaluated by set operations and is in agreement with an information-
theoretic definition of similarity [10].  

 
Definition 1: Assume A and B are two peers, and their extended Ontology Signature 
Sets are S(A) and S(B) respectively. The semantic similarity between peer A and peer 
B is defined as:  

|)A(S)B(S||)B(S)A(S||)B(S)A(S|

|)B(S)A(S|
)B,A(sim

−+−+
=

βα∩
∩  

In the above equations, “∩” denotes set intersection, “–” is set difference, while “||” 
represents set cardinality, “α” and “β” are parameters that provide for differences in 
focus on the different components. The similarity sim, between A and B, is defined in 
terms of the semantic concepts common to OSS of A and B: S(A)∩S(B), the concepts 
that are distinctive to A: S(A)–S(B), and the features that are distinctive to B: S(B) – 
S(A). With the similarity measure specified, we have the following definition: 

 
Definition 2: Two nodes, node A and node B are said to be semantically equivalent if 
their semantic similarity measure, sim(A,B) equals to 1 (implying sime(B,A)=1 as 
well). Node A is said to be semantically related to node B, if sim(A,B)  exceeds the 
user-defined similarity threshold t (0<t≤1). Node A is semantically unrelated to node 
B if sim(A,B)<t. 

4   Self-organized Semantic Small-World Overlay  

We follow the idea of the Kleinberg experiment to construct the semantic small-world 
network. In Kleinberg’s experiment each node keeps many short-range contacts, as 
well as a small number of long-range contacts. In our system, a node distinguishes 
three kinds of neighbors based on their semantic similarity. A peer A’s neighbor, B, 
can be one of these three types: (1) zero-distance neighbor (or semantically equivalent 
neighbor), if sim(A,B)=1, (2) short-distance neighbor (or semantically related 
neighbor) if sim(A,B)≥t (0<t<1 is A’s semantic threshold), (3) long-distance neighbor 
(or semantically unrelated neighbor) if sim(A,B)<t. A node always tries to find as 
many close neighbors as possible, but it also keeps some long distance neighbors to 
reach out to other ontological clusters.  

Nodes in the system randomly connect to each other through these three types of 
neighbors. They produce a semantically clustered small-world topology as shown in 
Fig.2. The clustered structure is not flat but multi-layered; nodes with similar 
ontological topics, i.e., short-distance neighbors, form a domain (a region formed by 
nodes with the same shape in the figure); inside the domain, nodes may create smaller 
clusters (sub-regions in a domain with same color) if they share the same ontology 
schema. For example, all peers in the medical domain are interested in medically 
related information. They may be interested in different aspects of the medical 
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resources, and they may use different ontologies to describe their resources. They 
connect with each other through short-distance links. Inside the medical domain, 
nodes further organize themselves to finer-grained clusters based on their ontologies. 
For example, node N1, N2, N5, N8 and N11 use the same ontology O3 (e.g., a medical 
ontology, SNOMED-RT [26]). Clusters and domains do not have fixed boundaries; 
they are formed by randomly connecting relevant nodes. 

zero-dist neighbor
short-dist neighbor
long-dist neighbor

N2

N1 N5

N8 N11

N3
N4N6

N7

O1
O2

O3

Medical domain Bioinformatics domain

Simulation domain
 

Fig. 2. The semantic small-world network topology 

The construction of an ontology-based topology is a process of finding 
semantically related neighbors. A node joins the network by connecting to one or 
more bootstrapping neighbors. Then the joining node issues a neighbor-discovery 
query, and forwards the query to the network through its bootstrapping neighbors. 
When a node N receives a neighbor-discovery query Q which tries to find neighbors 
for a new joining node X, N computes the semantic similarity between X and itself. If 
N is semantically related to X, N will send a reply to X. If the query’s TTL does not 
expire, N computes the semantic similarity between X and each of its neighbors, and 
forwards the query to semantically related neighbors. If no semantically related 
neighbors are found, the query will be forwarded to N’s long-distance neighbors. 

With the semantic small-world topology constructed, information discovery can be 
efficiently performed. In most cases, a discovery query can be answered within  
the querying node’s local domain, because queries reflect the querying node’s 
ontology interest, and semantically related nodes are within the neighborhood of the 
querying node. When a node issues (or receives) a query, it first chooses its zero-
distance neighbors to forward the query inside the local cluster. Since they use the 
same ontology, the zero-distance neighbors are the best candidates to forward the 
query to. Another important step in query processing is reformulating a peer’s query 
over other peers on the available semantic paths. Starting from the querying peer, the 
query is reformulated based on the inter-ontology mapping over the querying peer’s  
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short-distance neighbors, then over their short-distance neighbors, and so on until the 
query TTL expires. Interested readers can refer our previous work [27] for the inter-
ontology mapping schemes. Sometimes, users may want to locate resources in other 
semantic domains. In this case, they would first locate the related domain using the 
long distance-neighbors. 

6   Experiments 

We have performed extensive simulation experiments to evaluate the performance of 
our overlay network structure. 

6.1   Setup 

The test data is artificially generated. The T-Box ontologies are generated first, and 
then individuals are created by instantiating classes. We assume for simulation 
purposes that ontologies and queries are associated with a specific domain, and all 
ontologies in the same domain have ontology mappings defined in advance. The 
simulation is initialized by injecting nodes one by one into the network until a certain 
network size has been reached. After the initial topology is created, a mixture of joins, 
leaves, and queries are injected into the network based on certain ratios. The 
proportion of join to leave operations is kept the same to maintain the network at 
approximately the same size. Inserted nodes start functioning without any prior 
knowledge. 

For comparisons, we simulate our SOON overlay in conjunction with the learning-
based ShortCut overlay [11] and a random-walk based simple Gnutella overlay [25].  
The ShortCut overlay, as will be described in the related work, is chosen as one 
comparison reference since it is simple yet effective, and many popular applications 
(e.g., [11], [12], [13], [14]) use this overlay as their basic routing overlay. Moreover, 
it is comparable to our network in the sense that it creates clusters on top of the 
unstructured network. Flooding-based Gnutella was chosen as another reference 
 

Table 1. Parameters used in the simulations 

Parameter Range and default value 
network size 29~215  default: 10,000 
initial neighbors (node degree) 5 
average node degree 14 
TTL 1~20 default 9 
resource-discovery query walkers 3 (propagate exponentially) 

neighbor-discovery query walkers 2 (propagate linearly) 
ontology domains 1~10  default: 8 
ontology schemas per domain 1~10 default:8 
resources per node 1~10 
die/leave probability per time slice per node 0-21%, 3% default 
query probability per time slice per node 5% 

sample of nodes to compute diameter 5% 
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network for its simplicity and prevalence, which, in fact, made it a widely used 
baseline for many previous research efforts. The simulation parameters and their 
default values are listed in Table 1. 

6.2   Results and Discussion 

Emergence of the small-world 
As discussed, the topology of the peer network is a crucial factor determining the 
efficiency of the search system. We expect that the SOON semantic neighbor 
discovery scheme will transform the topology into a small-world network. To verify 
this transformation, we examine two network statistics, the clustering coefficient (CC) 
and the average network path length (APL), as indicators of how closely the topology 
has approached a “small-world” topology. The CC is a measure of how well 
connected a node’s neighbors are with each other. The CC of a node is the ratio of the 
number of existing edges and the maximum number of possible edges connecting its 
neighbors. The APL is defined as the average shortest path across all pairs of nodes. 
The APL corresponds to the degree of separation between peers. In our experiment, 
we use a random sample of certain percent of the graph nodes to compute APL.  
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Fig. 3. Comparison of clustering coefficient 
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Fig. 4. Comparison of average path length 

We performed experiments to measure SOON’s CC and APL. An interest-based 
ShortCut topology and a random power-law topology with the same average node 
degree are used as reference topologies. The former has been proved to be a small-
world network [15]. Fig.3 and Fig.4 show plots of the CC and the APL as a function 
of the number of nodes in the network. We observe that both the CC and the APL of 
SOON are very similar to those of ShortCut. The CC of SOON and ShortCut are 
much larger than that of the random power-law network, while the APL of SOON and 
ShortCut are almost the same as that of the random network. This indicates the 
emergence of a small-world network topology [16].  
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Scalability and efficiency 
We examine the system performance in three different aspects, namely routing 
scalability, efficiency, and accuracy. The performance is measured using the metric of 
recall rate, which is defined as the number of results returned divided by the number 
of results actually available in the network. First, we vary the number of nodes from 
29 to 215 to test the scalability. The results are listed in Fig.5. As we expected, SOON 
gets higher recall in all these different sized networks. In addition, SOON’s recall 
decreases less with the increase in network size. Fig.6 illustrates the system efficiency 
by showing the relationship between query recall rate and query TTL. With a small 
TTL, SOON gets a higher recall rate than the other two network. This means that 
SOON resolves queries faster than the others. In Fig.7 we show the effect of 
dispatching a different number of walkers to search the network. We can see that with 
the same TTL, SOON locates more results with fewer walkers.  

SOON’s small-world topology effectively reduces the search space, and its 
ontology summary guides the query in the right direction. This explains why SOON 
scales to large network size and why it achieves higher recall with shorter TTL and 
fewer walkers. Besides all these reasons, another factor contributing SOON’s overall 
better recall rate is that SOON is able to locate semantically related results that cannot 
be located by the ShortCut and random-walk. Because of the semantic heterogeneity 
of our experimental setup, relevant resources may be represented with different 
ontologies. SOON may use its ontology signature set to find semantically related 
nodes and use the mapping defined to translate the query. Therefore, it can locate 
most of the relevant results. However, for ShortCut and random-walk, they have no 
way to find semantically related resources, but only resources represented in the same 
ontology as the ontology of the querying node.  
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Fig. 5. Comparison of average path length 
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Fig. 6. Comparison of average path length 
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Fig. 7. Comparison of average path length 

Overhead and adaptability to dynamics 
The good recall performance of SOON does not come for free. Generally speaking, 
there is a tradeoff between query efficiency and maintenance overhead. Unlike 
ShortCut and random-walk approaches, which only create query propagating 
overhead, SOON also creates overhead for maintaining neighborhood relationship. 
We expect the extra overhead is reasonable and the saving from query cost exceeds 
the extra maintenance cost. To verify this, we examine the system’s overhead in terms 
of accumulated bandwidth. System overhead has a close relation with the system 
dynamics, as a system must maintain consistent information about peers in the system 
in order to operate most effectively. Therefore, we measure the system dynamics 
together with the overhead. To evaluate the adaptability to different levels of 
dynamics, we measure the system overhead under different levels of peer “churn 
rate”, referring to the rate of peers leaving/joining the system.  

The experiment shown in Fig.8 gives an overview of how dynamics affect the system 
performance. We find that SOON performs similarly to the ShortCut algorithm which is 
proved to be resilient to churn [11]. When peers join or leave frequently, the 
performance of ShortCut and SOON deteriorate gracefully. Churn does not affect the 
two schemes dramatically because both algorithms do not depend on a strict structure to 
perform routing as DHTs do. Their unstructured random topologies provide multiple 
routes to a destination thus increasing the system resilience. In the worst case, they 
degrade to random-walk.  
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Fig. 8. Recall vs. churn rate 

Fig.9 shows the accumulated bandwidth overhead of finding 10000 results under 
different churn rates. From the figure, we can see that in most situations SOON 
produces much less overhead than the other two methods. But when the system is 
very dynamic, such as when the churn rate is beyond 20%, SOON produces much 
more overhead. The high overhead problem of SOON in very dynamic environments 
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Fig. 9. System overhead (accumulated bandwidth) vs. churn rate 

can be solved by a simple solution: when the network is very dynamic, the system can 
give up the ontology-based topology construction but resort to basic Gnutella random-
walk as the solution.  

6   Related Work 

Research has harnessed the power of semantic technologies to aid in information 
representation, retrieval and aggregation over large distributed systems. P2P 
technology has been used to improve the scalability and efficiency of the semantic 
searching. For example, systems such as Edutella [17] and InfoQuilt [19] use broadcast 
or flooding to search their semantic metadata, while many other projects, such as 
RDFPeer [20] and OntoGrid [21] attempt applying DHT techniques to the retrieval of 
the ontology encoded knowledge. pSearch [22] applies a dimension reduction 
technique, called rolling index, on top of CAN to realize a semantics-based search.   

Recently, there has appeared the idea of grouping nodes with similar contents 
together to facilitate search. The latest super-peer-based Edutella [18] and Semantic 
Overlay Network (SON) [23] rely on centralized server or super-peers to cluster 
contents and nodes. Semantic Small Word (SSW) position peers and data objects in 
the semantic space, so that peers with similar data objects form into clusters. It then 
applies a dimension reduction technique on top of the DHT to realize a semantics-
based search. In SSW, semantics of data objects is represented by a multi-attribute 
vector, but not Semantic Web-based data. Applications such as REMINDIN [11], 
Helios[13], and Bibster [24] add semantic short-cuts to group nodes. The short-cut 
approach relies on the presence of interest-based locality. Each peer builds a shortcut 
list of nodes that answered previous queries. To find content, a peer first queries the 
nodes on its shortcut list and only if unsuccessful, floods the query. 

7   Conclusion 

In this paper, we propose a self-organized semantic overlay network, SOON. It uses 
an ontology-based representation of the information metadata. It enables peers to 
automatically organize themselves according to their semantic properties to form a 
semantic small-world topology, so that information retrieval can be effectively 
performed within semantically related small-worlds. Our simulation results prove that 
SOON improves interoperability among network participants and aids efficient 
information discovery and access.  
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