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ABSTRACT 
DHT-based P2P systems have been proven to be a scalable and 
efficient means of sharing information.  With the entrance of 
quality of services concerns into DHT systems, however, the 
ability to guarantee that the system will not be overwhelmed due 
to load imbalance becomes much more significant, especially 
when factors such as item popularity and skewing are taken into 
consideration.  In this paper, we focus on the problem of load 
imbalance caused by skewed access distribution. We propose an 
effective load balancing solution, which takes the peer 
heterogeneity and access popularity into account to determine the 
load distribution. Our algorithm achieves load balancing by 
dynamically balancing the query routing load and query 
answering load respectively. Experimentations performed over a 
Pastry-like system illustrate that our balancing algorithms 
effectively balance the system load and significantly improves 
performance.   

Categories and Subject Descriptors 
C.2.4 [Computer-Communication Networks]: Distributed 
Systems – distributed applications.  

General Terms 
Algorithms, Performance 

Keywords 
Load-balancing, distributed hash tables (DHT), peer-to-peer (P2P) 
systems, quality of service (QoS) 

1. INTRODUCTION 
Distributed Hash Tables (DHTs) [1][2][3][4] provide a reliable, 
scalable, fault tolerant and efficient way to manage P2P networks. 
Typically employing some variant of consistent hashing to 
associate keys with nodes, each node is mapped to a unique ID 
and owns the set of objects whose IDs are “closest” to it, while 

object lookup queries consist of following well-defined paths 
from a querying node to a destination node that holds the index 
entries pertaining to the query. In theory, DHTs can provide fair 
and scalable service because they achieve a balanced partition of 
workload amount the nodes in the system.  In practice however, 
this is not always the case.  Given the heterogeneous nature of 
individual peer capacity in a P2P network (due to non-uniform 
computational power, storage capacity and network bandwidth 
difference between peers), even a uniform workload distribution 
amongst peers can still lead to load imbalance problems, 
additionally encumbered by the fact that the consistent hash used 
by DHTs can cause certain peers to have up to O(logN) times as 
many objects as the average peer in the network [3], intensifying 
the imbalance.  

Furthermore, since objects and queries within the system tend to 
be skewed [5][6] (i.e. certain objects are significantly more 
popular than others), heavy lookup traffic load is experienced at 
the peers responsible for popular objects, as well as at the 
intermediary nodes on the lookup paths to those peers. When 
subsequent tasks are then obliviously assigned to the already 
overloaded node, the average response time consequently 
increases drastically.  This paper aims at balancing the highly 
unbalanced load caused by skewed object and query distribution 
through the use of a comprehensive balancing mechanism, which 
includes an adaptive load redistribution scheme as well as a 
dynamic routing table reconfiguring scheme. 

2. RELATED WORK 
There have been many load balancing schemes proposed for 
DHT-based systems. Roughly, we divide them into four 
categories: 

The virtual server approach [7][8][9][18] focuses on the 
imbalance of the key distribution due to the hash function. Each 
physical node instantiates O(logN)  number of virtual servers with 
random IDs that act as peers in the DHT, which reduces the load 
imbalance to a constant factor. To address peer heterogeneity, 
each node selects a number of virtual servers to create 
proportional to its capacity.  Unfortunately, the usage of virtual 
servers greatly increases the amount of routing metadata needed 
on each peer and causes more maintenance overhead. In addition, 
the number of hops per lookup (and latencies) increases. 
Moreover, it doesn’t take object popularity into account.  
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Unlike the virtual server approach, the dynamic ID approach uses 
just a single ID per node [10][11][12][19]. The load of a peer can 
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be adjusted by choosing a suitable ID in the namespace. However, 
all such solutions requires IDs to be reassigned to maintain load 
balance as nodes dynamically join and leave the system, resulting 
in a high overhead because it involves transferring objects and 
updating overlay links. 

The third class of approaches uses multiple hash functions to 
balance the load. The power of two choices [13] uses two or more 
hash functions to map a key to multiple nodes and store the key 
on the peer that is the least loaded. In the k-choice [14] load 
balancing algorithm, the node uses multiple hashes to generate a 
set of IDs and at join time selects an ID in a way to minimize the 
discrepancies between capacity and load for itself and the nodes 
that will be affected by its join time. While such a strategy is 
simple and efficient, it increases the computational overhead for 
publishing and retrieving content, since multiple hash functions 
have to be computed each time; in addition, it is a static 
allocation, and does not change in the case that the workload 
distribution shifts. 

The last category of balancing schemes is by caching and 
replication [2][3][20]. Hotspots and dynamic streams are handled 
by using caches to store popular objects in the network, and 
lookups are considered resolved whenever cache hits occur along 
the path. Pastry [2] and Chord [3] replicate an object on the k 
servers whose identifiers are closest to the object key in the 
namespace to improve the availability, but it also help balance the 
load of a popular topic. Unfortunately, the last few hops of a 
lookup are precisely the ones that can least be optimized [15]. 
Moreover, since the query load is dynamic, a fixed number of 
replicas do not work well; if the number is chosen too high, then 
resources may be wasted, and if it is set too low, then these 
replicas may not be enough to support a high query load. 

3. ADAPTIVE LOAD BALANCING 
SCHEME 
In this section, we detail our load balancing scheme, focusing on 
the imbalance caused by heterogeneous object popularity. We 
propose a comprehensive load balancing strategy, which address 
this problem by dynamically re-distributing the load of hot spots 
to other ‘cold spots’. Particularly, we distinguish two types of 
load: query answering load and query forwarding load (query 
load and routing load for short). Aiming at balancing these two 
kinds of load, three balancing strategies have been proposed:  (1) 
adaptive object replication scheme, which targets balancing the 
query load; and (2) adaptive routing replication and (3) dynamic 
routing table reconfiguration, both aimed at balancing the 
system’s routing load. Each node analyzes the main cause of its 
overloading and uses a particular balancing algorithm to correct 
its situation. 

3.1 Load Metric 
Our load balancing scheme involves a load metric to gauge the 
activity of each peer node and make the necessary adjustments.  
Each peer p in the network has a capacity C for serving requests, 
which corresponds to the maximum amount of load that it can 
support.  In our paper, this is derived from the maximum number 
of queries that can be routed, answered, or queued per second by 
the peer.  It is assumed that any arriving traffic that can not be 
either processed or queued by the peer is dropped.  It is also 

assumed that nodes will be able to define their capacity 
consistently via a globally ratified/used metrics scale.   

At any given time, the load of peer p is defined as the number of 
requests received per unit of time. We focus on two kinds of 
requests: the query routing request, and query answering requests.  
On receiving a routing request, the peer checks its routing table 
and forwards the query to next hop.  If it receives a query 
answering request (meaning that it has a locally stored solution to 
that request), it serves that request according to the application’s 
needs (For example, answering a complex query, or transferring a 
file, and so on).  In this paper, the current load value L of a node 
is defined in Equation (1) as the sum of its current routing load 
and its current query load: 

LqLrL +=    (1) 

lrbqaL ji ××+×= ∑∑ )(   (2) 

Both the routing and query load can be represented by the number 
of requests received in unit time. Assuming that the unit load is l, 
and each routing request creates a unit load while each query 
request creates b unit load, then (1) can be converted to (2), in 
which ∑ iq is the number of query requests in unit time period, 

and  ∑ ir is the number of routing requests in unit time period. 

For any given peer p, we also define an overloading threshold 
value, To, which represents the point after which additional 
workload placed on the peer will induce overloading, and trigger 
load redistribution for p. This value can be represented as a 
portion of the peer’s capacity (e.g., To = 0.8C,   which means that 
p is considered overloaded when it reaches 80% of its capacity). 
We also introduce another load threshold value, Ts, that 
represents the ‘safe’ workload capacity for a peer.  A peer will 
agree to accept redistributed load from the overloaded peer only 
when its load is below Ts. The goal of load redistribution is to 
make the workload on all participating peers fall below their 
respective Ts in order to guarantee that none of them will again be 
overloaded soon after the redistribution. 

3.2 Adaptive Object Replication Algorithm 
Nodes storing very popular objects are susceptible to becoming 
overwhelmed due to external requests for those objects.  In this 
case, attempting to redistributing the load via shedding objects 
and keys to other nodes does not guarantee any noticeable 
improvement, since even one very popular key could overload a 
node. Therefore, we suggest a replication-based method to relieve 
the load of overwhelmed nodes.  By replicating popular keys of 
overloaded nodes to lightly loaded nodes, we help to balance the 
network load. While this idea of balancing by replication is by 
itself not new, the when, where, and how we propose are.  
Specifically, when does replication occurs, where do we locate 
the candidates to help out an encumbered node, and how do the 
consequences of the redistribution get announced to the rest of the 
system. 

When: Each peer periodically checks its current load via the 
previously mentioned load metrics. If it is above the overloading 
threshold (i.e., L > To), and this overloading is caused mainly by 
query loads (i.e., ∑∑ ×≥× )( ji rbqa ), it will pick a light loaded 

node to replicate its keys thus sharing the load. When more than 



one peer is responsible for a popular key, each responsible peer 
only manages part of the load, and reducing the chance of 
overloading. 

Where: Upon detecting that it has crossed the ‘overload’ 
threshold, a node will issue a replica discovery query to the 
network, broadcasted (with limited steps) down the DHT 
broadcast tree (with the querying node as the root). Any lightly 
loaded nodes (defined previously as nodes with current load 
L<Ts) in the path of the tree will reply with its load information.  
Once enough responses have been received, the overloaded node 
begins transferring its keys and objects to these candidates, 
creating replica nodes of itself. 

How:  Once replicas are created, dissemination of information 
about the existence of these new replica must occur. For prefix-
based DHTs like Pastry or Tapestry, the replica informaiton is 
updated at all the peers in the original peer’s neighborhood set, 
leaf set, and routing table. Those nodes in turn update their own 
state based on the information received. Similar to the node 
joining process, the total cost for the replica update in terms of the 
number of messages exchanged is O(log2

bN). Similarly, for 
Chord-based DHTs, the replica info is updated at the fingers and 
predecessors of the related nodes to reflect the addition of this 
replica, requiring O(log2 N) messages. This process can be carried 
out asynchronously, since the peers in the routing table already 
have a pointer to the original peers and asynchronous update will 
not negatively affect the correctness of the system. When a query 
needs to be forwarded to a popular key, neighbouring nodes can 
now pick peers in a round-robin fashion from the list of available 
peers holding the key. Thus, the queries for the hot key are now 
partitioned among the multiple peers storing the key.  

When a popular key later becomes unpopular, the replica nodes 
can just get rid of the replicated keys, using access history to 
gauge the popularity of the replica. 

3.3 Adaptive Routing Replication Algorithm 
Replicating popular keys relieves the query answering load of the 
nodes responsible for the keys. However, another major source of 
workload in DHT overlays is caused by relaying queries among 
nodes. A node may be overwhelmed simply by the traffic of 
forwarding incoming routing queries. For example, the last hop 
neighbours of a popular key can be overloaded by forwarding 
queries to the popular node.  While this problem can be partially 
solved by the aforementioned duplication of popular keys to 
disperse the traffic, it cannot completely alleviate the problem 
since certain nodes in the system might still be functioning 
effectively as traffic hubs for popular sections of the network.  To 
address this problem, we propose a balancing scheme which 
actively redistributes the routing load of an overloaded node by 
duplicating its routing table to other nodes, thereby sharing its 
routing load. When a node is overloaded by routing loads, it will 
pick a light loaded node to replicate its routing table, so that the 
replica node can share its routing load. As with the object 
replication algorithm, the routing replica information should be 
propagated to other related nodes. These nodes subsequently 
update their respective routing tables by adding a replica entry to 
the entry of the original node so that future queries can be routed 
to either the original node or the new node, all the while 
maintaining system network correctness. Besides load balancing, 

replication approach can also improve the routing resiliency in the 
face of network failures. 

Figure 1 shows an example of the Pastry structure with the 
replication of routing tables. The query for item ID 0221, which is 
actually served by node 0222, is initiated at node 2012. According 
to its routing table, node 2012 chooses 0021 as the next hop. 
Node 0021 determines that node 0200 should be the right node to 
forward the query. Since node 0200 has a replica at node 1102, 
node 0021 may choose 1102 as the next hop. When the query is 
sent to 1102, it uses the duplicated routing table for 0200 to serve 
the query and send the query to the destination node 0222. When 
node 0200 is exposed to a high load, the replicas will share some 
of the traffic, preventing overload. 
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Figure 1. An example of adaptive routing replication 
algorithm 

3.4 Dynamic routing load adjusting algorithm 
In addition to the use of replication, another scheme to balance 
the routing load is by dynamically reconfiguring the routing table. 
In the previously mentioned methods, an overloaded node 
actively redistributes its own load, but in cases where external 
policies or the network environment prevents the redistribution 
effort, replacing routing table content can help relieve highly 
loaded nodes. 

This algorithm is tailored specifically for DHTs like Pastry or 
Tapestry. In those systems, many nodes with the same prefix can 
be potentially filled in a node’s routing table; the one in the table 
is the one the node knows, and with topological metric 
considered, it will ‘pick’ the one closest to itself.  We propose 
changing the strategy of choosing nodes in the routing table to 
balance routing load (especially to relieve heavily loaded nodes).  
In lieu of simply choosing according to a proximity metric, we 
choose with lower routing load instead.  Whenever an overloaded 



node receives a querying message from its neighbour, it will reply 
with a message indicating its overloaded status.  This neighbour, 
receiving the message, will, at the earliest opportunity possible, 
replace the entry of the overloaded node in its routing table with 
another node of the similar prefix. The light-loaded candidate 
nodes are learned from forwarded query messages which include 
IDs of passed nodes. By doing so, traffic is alleviated from the 
overloaded load as long as it is not the actual ‘end target’ of the 
query request, as the replacement node will be able to direct any 
queries the original node could’ve, and forwarding traffic is 
spread out more evenly.  

Continuing from our example in Figure 1, in node 1102’s routing 
table, let us assume that a neighbor node, 2122, (1st row 3rd 
column) is heavily-loaded. When a query passes through node 
2012 to 0021 and then comes to node 1102, since 2012 shares the 
identical first digital prefix (2) as the overloaded neighbour 2122 
in 1102’s routing table, the entry of 2122 will be replaced with 
2012. This way, the traffic to the more heavily loaded 2122 will 
be redirected to the more free 2012. 

4. EXPERIMENTAL RESULTS 
In this section, we examine the experimental effectiveness of our 
proposed load balancing schemes.  We applied each of our 
schemes to the Pastry system individually and evaluated the 
difference in performance.  Then, we examined their combined 
effect on the system. 

4.1 Setup 
Our balancing algorithm is experimented on Pastry. Each peer is 
assigned a 128-bit identifier, using a sequence of digits with base 
2b. In our simulation, the value of base b is 1. Each node is 
randomly assigned a value C representing its capacity 
( ). A node’s current load is represented by the 
number of query forwarding requests and query answering 
requests it receives per unit time. The load caused by the two 
kinds of requests has different weight to simulate the different 
causes they would incur.  In our experimentations, we assume that 
the query load is similar to that of a simple question answering 
procedure, such that we can set the ratio of the weight of query 
answering load vs. query routing load to 5 (i.e. a:b = 5:1 in 
Equation (2)).  Given the lightness of the query answering process 
in the current experiment, this would be a reasonable projection.  
In the case of more significant operations, such as file transfers, 
the ratio will be larger by several orders of magnitude.  

{ 4,3,2,1,0,5 ∈= iC i }

The simulation is carried out on an overlay network with 1,000 
nodes and 20,000 objects (2,000 distinct ones) randomly 
distributed throughout the nodes. Queries are issued with different 
frequencies and distributions (random distribution and Zipf 
distributions with different α value, which represents how 
skewered the distribution is, with a larger α value indicating 
greater levels of skewness).  For the purpose of our experiments, 
the To (overload) threshold for each node was set at 0.8, and the 
Ts (safety) threshold at 0.6 of its maximum capacity. Each 
experiment is run ten times with different random seeds, and the 
results are the average of these ten sets of results. 

Four different load balancing strategies were evaluated and 
analyzed; 1) Simple Pastry: this is the basic Pastry system with no  

load balancing strategy used (represented by Non in the following 
figures). 2) Reconfiguring the routing table (RR). 3). Duplicating 
objects (DO). 4) Duplicating the routing table (DR). and 5) 
Integrating all of the previous three balancing schemes (All). The 
performance metric we used is the load/capacity ratio. 

4.2 Results 
4.2.1 Effect of query distribution  
In an open, live P2P environment, query distribution follows a 
Zipf distribution [17]. Figure 2 shows the effect of query 
distribution on a node’s load burden (without any balancing 
mechanism used), indicating the mean, 1st and 99th percentiles of 
the peer workload/capacity ratio. This percentile represents the 
workload variances on the peers, such that the greater the 
difference, the less evenly the load is being distributed.  In the 
experiment, we increase the skew degree of the query distribution 
from random to Zipf with α=1.25. We can see that query 
distribution has a significant impact on peer load. The more 
skewed the query distribution, the more unevenly distributed the 
load becomes, causing some nodes to suffer from a very high load 
when the query is sufficiently skewed. 
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Figure 2. Mean, 1st and 99th percentiles of the ratio of 

load/capacity under different query distribution 

4.2.2 Performance of load balancing schemes under 
different query distributions 
Overloading a node can induce an overflow to its request queue, 
causing new coming queries to be dropped, which in turn 
deteriorates the system performance. Figure 3 shows an overview 
of the fraction of dropped queries under different query 
distributions and with each of our load balancing schemes. We 
can clearly see that each of our load balancing algorithms reduce 
the query drop fraction, thus improving the system performance.  
Specifically, algorithm All, which integrates all of the other 
algorithms we presented earlier, experiences the best performance 
in terms of minimizing the query drop rate even under a highly 
skewed query distribution.  

A caveat worth mentioning is that in Figure 3, we can see that 
duplicating routing table scheme reduces more dropped queries 
compared to duplicating objects. Note that this is dependent on 
the parameters we set, particularly the query load to routing load 
ratio (a:b=5:1).  If the ratio is larger, it means that the query 
answering is more complex compared to the query forwarding, 
thereby accounting for more of the total load. From the figure, we 
see clear indication of the effectiveness of our proposed 
algorithms. The following is a more in-depth examination of the 
results of each of our balancing schemes: 
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Figure 3. Fraction of dropped queries under different query 

distribution and load balancing schemes. 

4.2.3 Balancing of routing load 
Figure 4 illustrates the performance of each query routing-related 
balancing algorithm relative to the query insertion rate. The 
network size is 103 and the query distribution is Zipf (α =1). The 
figures show the percentile of the routing load in terms of query 
forwarding requests received. As mentioned, the smaller the 
difference, the better the load balancing performs. We can see 
that, as we increase the query frequency, the variance for all the 
algorithms becomes invariantly larger. This is because query 
distribution is skewed, so increasing the query frequency will 
result in more unbalanced requests, exacerbating the existing 
imbalance problem.  

While the majority of the experimental results were as we 
expected, the re-configuring routing table scheme contributed 
surprisingly little to performance gain. We attribute this 
observation due to the following: (1) Prefix requirements for the 
bottom rows of a node’s routing table are more stringent, so 
candidates for the replacement nodes of these rows are more 
difficult to find, resulting in the algorithm being unable to 
efficiently adjust this part of the routing (2) Consequently, the 
last-hops-neighbor of a node cannot find replacements to route to 
that node, so neighbours (in ID space) of a popular node can not 
be relieved.  
We can also observe from Figure 4 (d) that by integrating all of 
the schemes together, we were able to achieve performance 
beyond the sum of the benefits from just reconfiguring the routing 
table and duplicating the routing table. We surmise that this is due 
to the fact that although duplicating-objects does not balancing 
routing loads directly, it redistributes the load of hot spots, 
helping to relieve the traffic towards the hot spots and thus 
avoiding overloading the neighborhood with forwarding requests. 
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(a) Pastry, without any balancing adjustment 
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(b) Balancing by dynamic re-configuring routing table 
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(c) Balancing by duplicating routing table 
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(d) Balancing by all combination 

Figure 4. Mean, 1st and 99th percentiles of the routing load (in 
terms of number of routing request) under different query 
frequency 
 

4.2.4 Balancing of query answering load 

0
100

200
300

400
500

500 1000 1500 2000 2500
query freq# 

of
 q

ue
ry

 re
qu

es
t

 
(a) Pastry, without any balancing adjustment 
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(b) Balancing by duplicating objects 

Figure 5. Mean, 1st and 99th percentiles of the query load (in 
terms of number of query answering request) under different 
query frequency  



Figure 5 shows the result of the adaptive object replication 
algorithm. We can see that the algorithm effectively relieves the 
overloaded nodes and balances the load because the hot items are 
quickly replicated in other nodes in the network. 

4.2.5 Balancing of the whole system load 
Figure 6 shows the results of the combined algorithm in balancing 
system load. (Note: the ratio of the weight of query answering 
load and the weight of query forwarding load is 5:1. With 
different ratio, the figure may change a little bit.) The results of 
the experiment clearly indicate significant and drastic effect on 
system load balances. 
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Figure 6. Mean, 1st and 99th percentiles of the system load 

under different query frequency  

5. CONCLUSION 
We have presented an effective approach to balance load in DHT 
systems. Our work distinguishes routing load and retrieval load, 
and deals them separately. By dynamically replicating different 
potions of the overloaded node based on source of the overloading 
(replicating either its routing table or its keys), we overcome the 
restrictive nature of traditional balancing schemes that assumes 
homogeneity among peers and the type of load they incur.  This 
approach enables the system good load balance even when 
demand is heavily skewed.  Extensive simulation results indicate 
significant improvements in maintaining a more balanced system, 
leading to improved scalability and performance. 
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