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ABSTRACT 

Drug discovery is a lengthy, expensive and difficult process. Indentifying and understanding the hidden 

relationships among drugs, genes, proteins, and diseases will expedite the process of drug discovery. In 

this paper, we propose an effective methodology to discover drug-related semantic relationships over 

large-scale distributed web data in medicine, pharmacology and biotechnology. We utilize semantic web 

and distributed system technologies, and developed a novel hierarchical knowledge abstraction and an 

efficient discovery protocol. Our approach effectively facilitates the realization of the full potential of 

harnessing the collective power and utilization of the drug-related knowledge scattered over the Internet. 
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INTRODUCTION 

Drug discovery is a process of discovering and 

designing drugs. It is generally related to the 

fields of medicine, pharmacology and 

biotechnology. Despite the advances in chemical 

synthesis techniques as well as combinatorial 

and cheminformatics and understanding of 

biological systems, drug discovery is still a 

lengthy, expensive, and difficult process with a 

low rate of new therapeutic discovery. The 

process of drug development consists of drug 

compounds proposal, pre-clinical, clinical trial, 

and FDA review and approval (Anyanwu & 

Sheth, 2003). Usually, 5000 to 10,000 

compounds are proposed for a potential drug 

(DiMasi  et al., 2003; DiMasi et al., 1991; Masia 

2009; Collier, 2009) . An extensive research of 

the proposed compounds is conducted to select 

2.5% to 5% for preclinical trials to be tested on 

animals. Among the selected compounds for 

preclinical trial, only 2% may get approved for 

clinical trial. Finally, only 1 compound becomes 

an approved drug for the treatment of diseases 

and use on humans (Collier, 2009). Studies also 

show that it takes about 15 years from 

compound proposal to FDA approval of a new 

drug to treat a disease, and the total cost is 

between 0.8 to 1 billion US dollars (DiMasi, 

2003). 

To overcome the aforementioned 

problems of drug discovery, drug repositioning 

(Sleigh & Barton, 2010) has been proposed. 

Drug repositioning is the application of the 

existing drugs to new indications or new 

diseases. An existing drug has passed significant 

pre-clinical and clinical tests. Its toxicity and 

other effects are already known. Hence, the cost 

of using it for some other diseases will be much 

less as compared to developing a drug from 

scratch (Hopkins, 2008; Boran & Iyengar, 2010; 

Druker et al., 1996). Conventional drug design 

follows the principle of “one gene, one disease, 

one drug”. One drug is targeted for the treatment 

of one disease caused by one gene (Sleigh & 

Barton  2010). Unlike conventional drug design, 

drug repositioning studies interactions of drugs 

with multiple targets Hopkins, 2008; Boran & 

Iyengar, 2010). One drug can be used with 

multiple diseases. Some repositioned drugs have 

been approved with new uses that are different 

from original uses (Chong & Sullivan, 2007; 

Verma et al., 2005).  Here are some examples. 
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Thalidomide normally as a drug for sedation, 

nausea and insomnia is being used in the 

treatment of multiple myloma (Durk, 2006). 

Acetylsalicylic acid, as a drug for reducing 

aches and pains and fever is being used in 

cardiology to prevent heart attacks, strokes and 

blood clotting due to its antiplatelet activity 

(Krumholz et al., 1995). Also Miltefosine for the 

treatment of Cancer has the new indication as 

Visceral leishmania (Sundar et al., 1998). 

Another very common example is of Sildenafil 

which was earlier used for hypertensionis now 

being used for male erectile dysfunction in the 

name of Viagra (Boolell et al., 1996). 

Presently, most of repositioned drugs 

are developed by observing the side-effects of 

other drugs (Aronson, 2007; Ashburn &Thor, 

2004). However, it will be more effective to 

study the polypharmacological action of drugs 

and examine proteins, genes, pathway and other 

important factors, rather than discovering the 

effects merely by observation. The hidden 

relationship between drugs and diseases could 

not be observed and identified incipiently, so 

does the information about the drug and its new 

applications. 

With the development of Semantic Web 

technologies, more and more Semantic Web data 

including data related to proteins, genes, drugs, 

disease are generated. For example, the 

Bio2RDF project generates a network of the life 

science data. Different databases across life 

sciences platform have been linked using open-

source Semantic Web technologies to provide 

support biological knowledge discovery (Nolin 

et al., 2008). The Linking Open Drug Data 

project brings the data sources about drugs, 

Chinese medicine, clinical trials, diseases and 

pharmaceutical companies together onto the 

Web of Linked Data and facilitates the 

integration of about 8.4 million data (Samwald 

et al., 2011). To effectively utilize the large 

amount of semantic data, efficient search 

mechanisms for Semantic Web data have been 

proposed for both humans and software agents. 

For instance, the Semantic Search scans objects 

to capture instances in a given data set (Guha et 

al., 2003). By utilizing keywords, the Swoogle 

search engine retrieves semantic entities as 

Uniform Resource Identifiers (URI) (Ding et al., 

2004). To support complex queries over 

Resource Description Framework (RDF) bases, 

query languages, such as SPARQL, have been 

used to express various restrictions on semantic 

entities and relationships 

(http://www.w3.org/TR/rdf-sparql-query/). 

These technologies effectively assist human and 

software agents to locate desirable information 

from large amounts of semantic data on the 

Web. However, they may not reveal hidden 

knowledge large semantic datasets. For instance, 

knowledge of determining the complex 

relationships between multiple semantic entities, 

i.e., “how drugs X and Y are related.”  

In Semantic Web, a sequence of 

complex relationship between the semantic 

entities forms a semantic association. The 

entities could be from disparate sources.  More 

than one path may exist between the entities or 

they may be associated in more than one way. 

An entity may be related to another entity 

directly or through one or more intermediate 

entities. A semantic association where an entity 

is related to another entity through intermediate 

entities is extremely important in drug 

discovery. Let’s look at how drugs work in the 

human body: The chemicals in the body may be 

broken down to make simpler chemicals or form 

other chemicals used in the functioning of the 

body. It involves various enzymes, proteins, and 

genes. When one molecule is transformed into 

another molecule through a series of steps, the 

process is called as pathway. The pathway is 

catalyzed by enzymes at various steps. Diseases 

affect the body physically and may affect the 

internal processes of the body and various 

pathways. In order to cure the diseases, drugs 

are used as foreign molecules. These foreign 

molecules are converted into other molecules 

and help in curing the disease. This could 

involve inhibiting the pathway of various 

organisms including bacteria causing the 

disease. Therefore, the drugs can be related to 

the diseases via intermediate protein targets. The 

drugs and the diseases may also be related via 

genes and pathway they inhibit. All these 

complex relationships among drugs, diseases, 

enzymes, proteins, and genes can be effectively 

captured by semantic links and associations. 

Currently, information about the various 
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molecules in the body and their properties, 

functions and their mutual interacting processes 

is widely available in the public knowledgebases 

such as DrugBank (Knox et al. 2011), KEGG 

(Kanehisa et al. 2010; Kanehisa et al. 2006; 

Kanehisa et al. 2004), OMIM (Hamosh et al. 

2004).  

Although there have been literature on 

discovering semantic links and relations (Meza 

et al. 2006, Sheth et al. 2005; Heim et al. 2010; 

Heim et al. 2010; Lehmann et al. 2007; 

Anyanwu & Sheth 2003), they require a 

centralized knowledgebase, where all of the 

entities and relationships are available for 

analysis. However, this centralized 

knowledgebase is normally not available for 

drug discovery. Drug-related knowledge is 

dispersed in heterogeneous domains such as 

chemical and biological domains, which are 

owned by different organizations and distributed 

in different locations.  It is impractical for the 

transmittal of terabytes of datasets over long 

distances in order to merge these data sources to 

a central location. Furthermore, some 

repositories may not be allowed to be merged 

either for legal reasons, for the risk of revealing 

business secrets, or for posing other social 

challenges. On the other hand, analyzing a local 

knowledgebase can only obtain limited 

knowledge that is constricted by spatial and 

temporal constraints. Apparently, existing 

centralized search technologies cannot be used 

in the drug discovery directly. 

In this paper, we propose a discovery 

scheme that breaks the traditional barriers of the 

centralized scheme into the realm of 

decentralized and distributed strategies. It 

supports automatic discovery of semantic 

relationships between drug-related entities, such 

as drugs, proteins, genes, and diseases, over 

geographically distributed knowledgebases on 

an unprecedented scale. Our discovery scheme is 

fully decentralized and scalable. It not only 

efficiently addresses the issues of drug relation 

discovery, but also improves the traditional 

search and discovery of drug-related semantic 

knowledge, and thus making general drug-

related knowledge sharing more effectives and 

efficient.  

The rest of the paper is organized as 

follows. In the following section, we detail the 

background knowledge and related work. Then 

we introduce the concept of semantic 

relationship. Thereafter, we describe the design 

of the discovery system. We evaluate the 

proposed methods and show their effectiveness 

with a comprehensive set of simulations and 

case study. Concluding remarks are provided at 

last. 

BACKGROUND AND RELATED 
WORK 

Drug Discovery 

In order to develop an effective drug, it is 

necessary to understand how disease and 

infection are controlled at the molecular and 

physiological levels. Basically, both the disease 

and its underlying cause need to be understood 

as well as possible. To understand the disease 

completely it is essential to understand as to 

which genes are affected by the disease as they 

in turn affect the proteins that they encode. 

Since the proteins interact with each 

other in living cells, and affect the tissue in the 

areas in which the cells are located, and 

consequently, affect the patient on the whole. On 

gaining a complete understanding of the disease 

a target protein or a target gene needs to be 

identified. Once a proposed compound for the 

potential drug is identified, it is characterized 

and screened for its efficiency to deal with target 

protein or gene. In practice, for every 5000-

10000 proposed compounds, only one gets 

approved as a drug for the treatment of diseases 

and use on humans. 

Currently, natural products play a very 

significant role in designing a drug. The drugs 

could be plant derived, such as Belladonna, or 

from the microbes, such as streptomyces or 

marine invertebrates.  

Despite advances in understanding of 

biological systems and in chemical synthesis 

techniques and combinatorial and 

cheminformatics, there is no increase in the 

number of new drugs.  Currently, it still takes 

about 15 years for a new drug to appear on the 

market. The research and development cost of 
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each new molecular entity is approximately 1.8 

billion US dollars. 

Polypharmacology and Drug 
Repositioning 

In order to reduce the time and cost in drug 

discovery, polypharmacology is receiving 

increasing attention. Polypharmacology is the 

study of interaction of drugs with multiple 

protein and gene targets (Hopkins 2008; Boran 

& Iyengar 2010).    

When a drug have a 

polypharmacological action on multiple targets 

that may fall in the same pathway (chain of 

reactions associated with a particular metabolic 

process), it is able to interrupt the pathway at 

multiple points and exhibits high efficacy. 

Drug repositioning is based on 

polypharmacology. It is the application of the 

existing drugs to new indications or new 

diseases (Sleigh & Barton 2010) since approved 

drugs could affect more than one protein target 

due to polypharmacological action, thereby 

affecting more than one disease.  An example of 

drug repositioning is the cancer drug, such as 

Gleevac, can bind to multiple kinases (Druker  et 

al. 1996). Other examples are Propiomazine 

(Largon) and Promazine (Sparine) which have 

14 targets each (Yıldırım et al. 2007). 

 There are also certain diseases where a 

single gene or single protein may not be 

responsible for it. Hence, one drug is insufficient 

to treat the diseases. The drug-target pair is thus 

crucial for polypharmacology. There could be 

many-to-many relationships between the drug-

target pairs. 

Linked Data Projects Related to Drugs 

Linked Data project uses the Web to connect 

related data that wasn't previously linked, or 

lowers the barriers to linking data currently 

linked using different methods. More 

specifically, Wikipedia defines Linked Data as 

"a term used to describe a recommended best 

practice for exposing, sharing, and connecting 

pieces of data, information, and knowledge on 

the Semantic Web using URIs and RDF."  

Many drug-related Linked Data projects 

exist. DailyMed publishes Linked Data of 

marketed drugs along with general background 

on the chemical structure of the compound and 

its therapeutic purpose, details on the 

compound's clinical pharmacology, indication 

and usage, contraindications, warnings, 

precautions, adverse reactions, overdosage, and 

patient counseling 

(http://dailymed.nlm.nih.gov/). DrugBank 

publishes Linked Data of almost 5000 FDA-

approved small molecule and biotech drugs 

(Knox et al. 2011). It contains detailed 

information about drugs including chemical, 

pharmacological and pharmaceutical data; along 

with comprehensive drug target data such as 

sequence, structure, and pathway information. 

LinkedCT.org (Linked Data Source of Clinical 

Trials) contains roughly 25 million triples (the 

underlying structure of any expression in RDF, 

each consisting of a subject, a predicate and an 

object) as of April 2011, about 106,000 clinical 

trials, with more than 167,000 links to external 

sources such as DBpedia (http://dbpedia.org), 

DailyMed (http://dailymed.nlm. nih.gov/), 

DrugBank (Knox et al. 2011), and 

Bio2RDF.org's PubMed (http://www.ncbi.nlm. 

nih.gov/pubmed). The readers can refer to live 

stats page for up-to-date statistics about the 

entities and external links. SIDER  publishes 

Linked Data of almost 1,000 marketed drugs and 

their adverse effects (http://sideeffects.embl.de/). 

The information is extracted from public 

documents and package inserts. Linking Open 

Drug Data (LODD) project brings the data 

sources together onto the Web of Linked Data 

and facilitates the integration of data (Samwald 

et al, 2011). All the data and the datasets used 

from different sources have been strongly linked 

and also linked to the other Linked data. LODD 

contains 8.4 million RDF triples and the data 

from the data sources about drugs, Chinese 

medicine, clinical trials, diseases and 

pharmaceutical companies have been linked 

together.  

Our work focuson discovering hidden 

relationships between drugs and protein and 

gene targets over these linked datasets. We 

further extend the concept of linked data to a 

larger scale and more distributed ad hoc data 
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sets. Our goal is to discover useful information 

from dispersed knowledgebases to expedite drug 

discovery process based on polypharmacological 

action. 

Discovery of Hidden Relationships 

There have been many studies on semantic 

relation discovery using data mining approaches, 

such as association rules and clustering (Nagano 

et al. 2010; Ruiz-Casado et al. 2005, Syed et al. 

2005; Jiang et al. 2007). However, their 

discovery mechanisms are normally based on 

the co-occurrence of the entities in documents, 

which is significantly different from our work. 

Our work focuses on semantic web datasets in 

which semantic entries are linked through real 

semantic links. The relationships are located by 

discovering the real semantic links but not co-

occurring. Therefore, in our work, we can not 

only identify if entities are related, but also 

explain how these entities are connected. 

The query supporting RDF semantic 

relationships were first proposed by K. 

Anyanwu and A. Sheth (Anyanwu & Sheth 

2003). They define a semantic association as a 

complex relationship between two resources, 

and introduce a set of operators for querying 

semantic associations. Based on their work, 

several applications have appeared that use 

semantic relations (Meza et al. 2006; Sheth et al. 

2005; Heim et al. 2010; Heim et al. 2010; 

Lehmann et al. 2007). Most of these applications 

assume a centralized dataset. Yet, researchers in 

(Perry  et al. 2005) propose a method for 

computing semantic associations over a P2P 

network. The authors use a super-peer based 

query planning algorithm for ρ-path quires. In 

their proposed system, knowledgebases are 

stored at the peer level, while indexes are stored 

at the super-peer level. Each super-peer is 

responsible for a group of peers. A super-peer 

knows about all of the other super-peers in the 

network and can query them to determine the 

semantic paths. It is an effective approach, but 

the scalability is still an unsolved issue. A 

couple of questions still remain:  (1) how to 

organize the peer group to reflect the semantic 

proximity, and (2) how super peers efficiently 

communicate. In (Li  et al, in press), we 

proposed a fully decentralized approach to 

discover semantic relationships over large-scale 

networks to address these questions. In this 

work, we adopt the idea of searching in different 

abstraction and extend it with a specific 

discovery scheme for drug discovery. 

REPRESENTING SEMANTIC 
RELATIONS 

The RDF is a World Wide Web Consortium 

(W3C) recommendation for describing Web 

resources. The RDF provides a basic data model, 

such as the entity-relationship model for writing 

simple statements about Web objects. It can 

make statements about resources in the form of 

subject-predicate-object expressions, termed 

triples in the RDF terminology. The subject 

denotes the resource that has a URI. The 

predicate denotes traits or aspects of the resource 

and expresses a relationship between the subject 

and object. It is also identified by URIs. The 

object is the actual value that can either be a 

resource or a literal.  

The RDF can also represent statements 

about resources as a directed labeled graph with 

typed edges and nodes. In this model, a directed 

edge labeled with a property name connects the 

subject to the object. For instance, the group of 

statements, “There is a drug identified by 

http://www.drugbank.ca/drugs/proguanil. It has 

a protein target http://www.uniprot.org/ 

DihydrofolateReductase, which is associated 

with a gene identified with 

http://www.genecards.org/DHFR. The 

gene is related with disease http:// 

www.ncbi.nlm.nih.gov/ omim/Malaria” could be 

represented as the RDF graph that is depicted in 

Figure 1. 

http://www.uniprot.org/DihydrofolateReductase

hasProteinTarget

http://www.ncbi.nlm.nih.gov/omim/Malaria

hasAssociatedGene 

associatedWithDisease

http://www.genecards.org/DHFRhttp://www.drugbank.ca/drugs/

proguanil

http://www.drugbank.ca/drugs/

proguanil

 

Figure 1. Example of Part of a RDF Graph. 

http://www.uniprot.org/
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As depicted in Figure 1, paths of the 

RDF graph represent semantic relationships 

among the participating resources (entities), 

explicitly or implicitly. We adopted the ρ-path 

query reported in (Anyanwu& Sheth, 2003)  as a 

way of expressing semantic associations 

between entities in the RDF graph. A path 

ρ=e1,p1,e2,p2,e3,…,en-1, pn-1,en is a sequence of 

RDF statements, where each triple ei, pi, ei+1, 

represents a single statement in which pi is the 

predicate and one of ei or ei+1 is the subject and 

the other is the object. While a ρ-path has been 

defined as a directed path in (Anyanwu& Sheth, 

2003) , we treat paths as undirected in our paper 

because as long as two entities are connected by 

undirected paths, they are semantically 

associated, even though there is no directed path 

connecting them. For example, in Figure 1, drug 

proguanil and gene DHFR are related although 

there are no directed paths between them. We 

can consider directions of the edges after 

undirected paths have been located. Therefore, 

in this paper, two resources x and y are said to be 

ρ-path associated if there exists an undirected 

path ρ of length n>0 between them. 

DRUG RELATION DISCOVERY OVER 
DISPERSED KNOWLEDGEBASES 

As mentioned, drug discovery involves data over 

many diverse domains such as chemical and 

biological domains. Data is created and stored 

by different organizations or individuals that are 

geographically distributed. To discover complex 

relationships over the dispersed data sites, new 

challenges have emerged. First, it is difficult to 

achieve global optimum of semantic association 

discovery with dispersed local operations 

because of the lack of a global view or unified 

understanding of the distributed semantic data; 

second, an efficient discovery protocol is 

required to forward search requests between 

knowledgebases and later to gather the search 

results because the relationships between two 

entities may span over multiple distributed 

knowledgebases; and third, it would be difficult 

to achieve scalability and low latency in large-

scale distributed systems due to the complexity 

of semantic-relation queries. We propose a novel 

hierarchical knowledge abstraction and an 

efficient discovery protocol to address these 

challenges. Our goal is to provide a flexible and 

effective drug relation discovery framework. In 

this work, we focus on Semantic Web data 

represented in RDF format. For data represented 

in other format, there are existing technologies 

to convert data to RDF format (Li & Su, 2009).  

We present our idea of hierarchical knowledge 

abstraction and efficient discovery protocol in 

the following subsections. 

Overview of Hierarchical Knowledge 
Abstraction 

As presented above, drug discovery can be 

converted to a path discovery problem in a 

linked RDF graph. However, path discovery is 

much more difficult than entity discovery, 

because it needs to locate not only the entities 

but also all paths connecting them. Our solution 

is inspired by the strategy of Inter-Domain 

Routing in the Internet. Considering Internet 

routing that is scalable with millions of nodes, 

our semantic graph is very similar to Internet in 

that both are large-scale including millions of 

nodes and edges, and both are distributed 

without a global view at any individual node. 

Therefore, we believe that we can adopt a 

similar abstraction strategy for our semantic 

path-finding. 

Given enormous links of the Internet, it 

is too expensive, if not impossible at all, to 

compute the route between all the nodes. Instead 

of working at such a low level of details, 

Internet routing is planned at the Autonomous 

System (AS) level.  Autonomous System 

corresponds to an administrative domain. Once 

the path reaches an AS border, the best route is 

computed from AS to AS.  The Border Gateway 

Protocol (BGP) is the core routing protocol 

being used for AS level routing. We adapt a 

similar idea of BGP for semantic relationship 

discovery.  

As shown in Figure 2, instead of starting 

from millions of semantic entities and 

relationships at the lower level, we consider 

each knowledgebase containing multiple entities 

and relations as an abstract unit (as an AS in the 

Internet). Each site hosts an individual 

knowledgebase. Based on our previous work on 

semantics-based topology adaptation (Li, 2010), 
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we can create links between distributed 

knowledgebases.  Next, through URL links and 

ontology-mappings, we connect knowledgebases 

to form a graph. In the graph, we treat 

knowledgebases as black boxes and ignore the 

detailed semantic entities and their relations. The 

graph, called the semantic graph, acts as the 

blueprint of our search graph. Based on the 

semantic graph, the semantic path discovery 

problem is analogous to the route discovery of 

Internet. This abstraction dramatically reduces 

the size of a potentially huge search space. 

 

A

B

C

D

Detailed semantic graph

Abstract knowledge base

KB_B

KB_A

KB_C

KB_D

 
Figure 2. Hierarchical Structure of Semantic Path Discovery 
of Drug Relation Discovery 

Preparation 

To link the dispersed knowledgebases to form a 

connected semantic graph, we proposed a 

semantics-based topology adaptation scheme to 

connect the knowledgebases containing similar 

or related semantic properties and facilitate the 

establishment of semantic mappings or links. 

The foundation of this scheme is a metric that 

measures knowledgebase’s semantic similarities. 

We have done work on measuring the semantic 

similarities between ontologies (Li & Khan, 

2009) and support multiple ontologies and 

improve the accuracy by integrating factors, 

such as the depth of a node in the ontology 

hierarchy and the type of links. After 

semantically related knowledgebases have been 

located, mapping or linking can be established 

between these knowledgebases. In some 

scenarios related knowledgebases can be 

merged. The afore-mentioned process can be 

achieved by P2P-based neighbor discovery and 

overlay formation. We encourage the readers to 

find more details about our proposed topology 

adaptation scheme by referring to our previous 

studies in (Li, 2010; Li & Vuong, 2008). After 

crating links/mappings between distributed 

knowledgebases, we can create a distributed 

semantic graph. 

As a semantic graph is constructed, the 

path finding problem is reduced to two steps: 

firstly, locate the source and destination 

semantic entities, and secondly, search for paths 

from the source knowledgebase containing the 

source entity to the knowledgebase containing 

the goal entity, at the knowledge-base level It 

turns out a much faster search. To efficiently 

locate the source and destination semantic 

entities, we adopt a distributed hash table 

(DHT)-based overlay (Rowstron & Druschel 

2001; Stoica et al. 2001; Ratnasamy et al. 2001) 

to index the semantic graph, with which 

semantic entities can be efficiently located.  

As mentioned, entities are subjects and 

objects in RDF triples. Triples in distributed 

knowledgebase that share common entities (i.e., 

the same subjects and/or objects) should be 

indexed together in one of the distributed 

knowledgebases, where they can be located 

later. The challenge in this scenario lies in 

assigning “index rendezvous points” for entities. 

To avoid the centralized bottleneck, we use a 

DHT overlay to provide decentralized and 

scalable rendezvous for RDF triple entities. Each 

triple is sent to two rendezvous knowledgebases 

for its subject and object respectively, which 

ensures that triples with common subjects and/or 

objects will be co-located. Unlike RDFPeer’s 

data indexing (Cai & Frank 2004), we do not 

index predicates (i.e., edges of the semantic 

graph), because normally we only need to locate 

entities of the semantic graph not the edges. We 

store each triple twice by applying a hash 

function to its subject and object. The DHT 

indexing guarantees the entities can be located 

within log(N) hops, where N is number of 

knowledgebases in the Semantic Web. 

Semantic Relation Discovery 

When the semantic graph is created, and both 

source and goal entities are located, the next step 

is to locate paths between the source and goal 
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entities. We explain the details in finding the 

path in this section. 

A

B

C

D
GAC

GAB

GAD

 

Figure 3. An Example of Connection of Knowledgebases and 

Their Gateways. 

To find a k-hop limited semantic path, 

we need to count the path length.  Therefore, 

each knowledgebase records a set of distances 

(in terms of semantic edges in the semantic 

graph) before they can be treated as a black box. 

The distance that matters is the set of shortest 

semantic hops between knowledgebases. We 

illustrated our path location idea in Figure 3. 

As shown in Figure 3, Knowledgebase A 

is linked to knowledgebases B, C, and D though 

ontology mappings. The entities in A that are 

linked or mapped to other knowledgebases are 

called gateway nodes of A. For example, GAB, 

GAC, GAD are knowledgebase A’s gateways to 

neighboring knowledgebases. If two 

knowledgebases A and B have more than one 

gateway nodes, we pick the one that contributes 

to the shortest semantic path. A records the 

shortest distances between all of its gateways. , 

we can see that from A’s local knowledgebase 

dist(GAB, GAC )=2, (i.e., the path cost of from B 

to C via A is 2), dist (GAB, GAD)=3, dist (GAC, 

GAD)=5. 

To locate paths between 

knowledgebases, we propose the Semantic 

Border Gateway Protocol (SBGP). This routing 

protocol was inspired by the BGP routing, but 

the protocol itself is different from BGP: BGP 

only needs to locate one shortest path from 

source to destination, while our SBGP has to 

locate multiple paths to discover multiple 

relationships between entities. The cost 

computation of SBGP is also different from 

BGP’s. Unlike BGP, SBGP does not consider 

the cost of an edge; instead, it considers the cost 

of the paths between gateway nodes. 

The SBGP is a path-vector protocol. In 

particular, for each knowledgebase j, 

knowledgebase i stores the knowledgebase paths 

of the lowest costs (maybe more than one) from 

i to j; in this vector, knowledgebases are 

identified by their knowledgebase ID. SBGP’s 

route computation is similar to all path-vector 

routing protocols. Each knowledgebase sends its 

routing table to its neighbors, and each 

knowledgebase can then, based on this 

information, compute its own routing 

information.  

A

F

ED

C

B

Direct Neighbors: B, C

Destination Paths Cost

Direct Neighbors: B, C

D B dist(G(A, B), G(B, D))

Direct Neighbors: F

A’s routing table:

E’s routing table:

Routing table format

 

(a) Initial Routing Tables 

F

Direct Neighbors: B, C, E

B dist(G(A, B), G(B, D ))

E dist(G(A, E), G(E, F))

Direct Neighbors: A, F

B A dist(G(E, A), G(A, B))

C A dist(G(E,A), G(A, C))

D

A, B dist(G(A,B ),G(B,D))+dist(G(B,A)+G(A, E))D

A

F

ED

C

B

A’s routing table:

E’s routing table:

 

(b)Updated Routing Tables.  

Figure 4. Routing table Updating after Establishing a New Link 

Figure 4 illustrates the SBGP updating 

process when a new path between node A and E 

is found. Figure 4 (a) shows the routing tables of 
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A and E before the connection is established. 

The routing tables record the path (nodes 

traversed to reach a destination node) and cost 

information to other nodes. The cost information 

is the distance between gateways. For example, 

in A’s routing table, the distance between A and 

D is the distance between two gateways: GBA 

and GBD . It is reported by A’s neighbor B. A 

does not record the cost to direct neighbors, 

since no gateway is used. A and E then exchange 

their routing tables, and compute their updated 

routing tables.  As shown in Figure 4 (b), E’s 

new routing table now includes all nodes in A’s 

routing table and A’s direct neighbors. The cost 

is updated by adding the distance of gateway 

GAE to A’s other boundaries in the path. For 

example, in A’s routing table, destination D can 

be reached with a cost of dist(GBA, GBD).  Then 

E can reach D through A’s boundaries GAE and 

GAB. Therefore, in E’s routing table the cost is 

dist(GAB,GBD)+dist(GAE,GA,B). If the cost is 

greater than the predefined k-hop limit, the path 

is ignored. In such a way, nodes can construct 

and update their routing tables. According to the 

routing table, a query looking for a destination 

node can be forwarded between knowledgebases 

in the routing path. 

Semantic Relation Retrieval 

Given a query of discovering the relationships 

between entity A and entity B, the system first 

locates the two knowledgebases, say, PA, PB, in 

charge of these two entities. Since there may 

exist multiple such knowledgebases, we 

consider each individual possible combination of 

them.  

With SBGP, the system can find the 

path connecting PA and PB. To retrieve semantic 

relations, the system has to go back to the 

detailed semantic graph (at the lower level 

shown in Figure 2) in two steps: (1) find the 

semantic path from entity A to one gateway node 

in PA which is on the path to PB. Similarly, find 

the semantic path from entity B to one gateway 

node in PB which is on the path to PA, and (2) 

retrieve the path from PA to PB. This is a process 

of finding paths between all boundaries in the 

path, which can be achieved by SBGP.  In such 

a way, drug-related semantic relations and 

associations can be obtained. 

In sum, with hierarchical knowledge 

abstraction and drug relation discovery protocol, 

one can find relevant drug information and 

determine their importance in drug discovery 

therefore expediting drug discovery process 

tremendously. In later sections, we further 

illustrate the significance of our work via 

examples. 

EVALUATION AND CASE STUDIES 

Setting up Simulation Experiments 

We tested the performance of the proposed 

mechanism with publicly available data sources 

on the Internet for genes, genetic information, 

pathways, proteins, drugs and diseases. The 

information contained on these data sources may 

be similar and overlapping for the same entity. 

Linking these datasets produces a network of 

linked drugs, proteins, genes and diseases.   

In our experiments, drug data was 

obtained from the most widely used drugs 

database, Drugbank (http://hwww.drugbank.ca ). 

Protein data was obtained from UniProt 

(http://www.uniprot.org) which is a widely used 

database for proteins and protein sequences. The 

proteins acted upon by the drugs in DrugBank 

are identified by the UniProt ID, which links 

them to the protein database. While Gene data 

was obtained from GeneCards 

(http://www.genecards.org) which contains 

information about all known and predicted 

human genes and information on diseases that 

was linked in OMIM database 

(http://www.omim.org). All the data were parsed 

to the RDF triple format.  

Our goal here is to discover complex 

semantic relationships between drugs and 

diseases, as well as the target proteins and the 

genes that are affected by those proteins. If the 

relationship exists through intermediate entities 

it can be expressed as a chained triple. Every 

element in a RDF triple is an URI. When two 

resources have the same URI they are said to be 

identical and all data for identical resources is 

merged.  

To simulate a distributed environment 

where dispersed knowledge can be shared, we 

created a network simulator with 1024 



International Journal of Distributed Systems and Technologies, 5(1), 22-39, 2014 

computers (nodes).  Thereafter, we divided the 

parsed RDF triples into smaller parts (sub-

knowledgebases), and deployed each sub-

knowledgebase on one of the nodes within the 

simulated network. In order to model the inter-

knowledgebase ontology mappings and links, 

we used the pre-existing links connecting 

entities that were located in different sub-

knowledgebases after knowledgebase 

decomposition. Therefore, we converted the 

knowledgebases to a set of smaller 

knowledgebases and distributed them in the 

network.  

We used BRITE (Medina et al. 2001) to 

generate network topologies. In particular, our 

simulator used a parser to parse the output file 

exported by BRITE and create the targeted 

topology. Since Power-law distributions have 

been observed in the Internet and also Semantic 

Web (Ding & Finin 2006; Theoharis et al. 

2008), we incorporate power-law in the topology 

generation by using Waxman and 

BarábasiAlbert models. The knowledgebase 

distribution also follows the power-law 

distribution.  In particular, we used a Zipf 

distribution (Zipf, 1949) to model the 

distribution of knowledgebases.  

Queries were generated by providing 

two semantic entities, the source and the 

destination. The source was picked randomly 

from a dataset’s knowledgebase. We also 

randomly picked a semantic path starting from 

the source entity with a path of length limit (1-

4), which led to a semantic entity that is labeled 

as the destination. The path may also cross 

multiple data sets (i.e., knowledgebases). 

Therefore, the query was to find all of the paths 

of length limited to k, between these two 

semantic entities. Each experiment was repeated 

ten times with different random seeds. 

Performance Evaluation 

First, we evaluated the completeness of the 

proposed search algorithm. Table 1 illustrates 

the recall rate of the proposed distributed 

discovery scheme. The recall rate is defined as 

the fraction of the successfully retrieved 

semantic relations that are relevant to the query. 

The results illustrate that our approach is 

complete, i.e., it can find all of the related 

relationships. As it is difficult to determine 

which relationships are more important for non-

professionals, our work focuses on locating as 

many relationships as possible without 

considering the precision. 

TABLE I.  RECALL OF THE DISCOVERY APPRAOCH 

Path-length 1 2 3 4 

Recall Rate 100% 100% 100% 100% 

Next, we studied the effectiveness of the 

hierarchy in the discovery scheme. We believe 

the hierarchy improves the scalability of the 

system. To test this hypothesis, we compare the 

number of semantic entities traversed when 

searching at different levels of hierarchy. Figure 

5 demonstrates the effectiveness of the hierarchy 

strategy. As shown in Figure 5, our discovery 

protocol significantly reduces semantic entities 

traversed. As a result, the network overhead and 

computation overhead related with traversing 

can be reduced. This efficiency is achieved 

because using two levels of hierarchy and 

applying SBGP routing technologies can reduce 

the search space and consequently improving the 

scalability.  

 
Figure 5. Discovery at Different Levels of Hierarchy 

To further evaluate the scalability and 

efficiency of the proposed discovery protocol 

SBGP, we compared its performance with 

breadth-first search (BFS)-based discovery 

scheme (Heim et al. 2010) in terms of average 

bandwidth and the number of semantic entities 

traversed.  BFS-based discovery (DiMasi et al. 

2003, Samwald et al. 2011) was used as the 

benchmark scheme because of its simplicity and 

popularity (Krishna et al. 2011).  In the 

simulations, a random set of nodes periodically 
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issue discovery queries. The queries were to find 

the relationships between a local entity of the 

querying node and another entity randomly 

selected from a node in the network. In each 

simulation time slice (1 second), the query 

probability for a given node was set to 0.1%. 

The length limit of the relations k was set to 4. 

The results are shown in Figures 6 and 7. As can 

be seen from Figure 6 and Figure 7, SBGP 

significantly outperforms BFS-based discovery 

in terms of the bandwidth consumed and the 

number of semantic entities traversed. (Note that 

Figure 7 was plotted on a logarithmic scale to 

better illustrate the significance of SBGP.)  

 
Figure 6. Comparison of SBGP and BFS in bandwidth 

comsumption. 

 
Figure 7. Comparison of SBGP and BFS in Semantic Entities 

Traversed. 

Case Study 

In this section, we present three examples to 

illustrate the significance of the discovery 

scheme. 

Example 1: Different relations between 
drug and disease.  

Figure 8 shows different paths from 

anti-malarial drugs and malaria. For example, 

Chloroquine, a commonly used treatment of 

malaria, is related the decease through a chain of 

protein target, gene, and related disease. While 

Proguanil relates malaria with a different path 

through gene DHFR, which treats the disease by 

acting on the metabolism of the parasite, 

Plasmodium falciparum and Plasmodium vivax, 

known to cause malaria. Some other antimalarial 

drugs, such as Chloroquine, Halofantrine, 

Mefloquine, Primaquine, Amodiaquine, and 

Quinine, contain Ferriprotoporphyrin IX. This 

compound is known to form cytotoxic 

complexes with the antimalarial drugs that cause 

plasmodial membrane damage. 

Example 2: Finding relations to 
demonstrate Polypharmacology of drugs. 

Polypharmacological properties of the 

drugs are demonstrated by different paths 

originating from one disease to a drug and vice-

versa with intermediate genes and protein 

targets. If two drugs have at least two same 

targets, they will show the polypharmacological 

properties. Alzheimer’s disease is generally 

treated by inhibiting the enzymes 

Acetylcholinesterase and Cholinesterase. The 

gene that codes Acetylcholinesterase is ACHE 

which is a known factor in Alzheimer’s disease 

and the gene that codes Cholinesterase is BCHE. 

There are a number of approved drugs in 

drugbank that are known to act as the inhibitors 

of Acetylcholinesterase as well as 

Cholinesterase. Of the 16 approved drugs in 

drugbank, 4 drugs, namely, Tacrine, 

Rivastigmine, Galantamine and Choline  

contained both Acetylcholinesterase as well as 

Cholinesterase and one Donepezil contained 

Acetylcholinesterase. Tacrine is given as an 

example in Figure 9.  
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The experimental drugs such as 

Methylphosphinic Acid, 2-(N-Morpholino)-

Ethanesulfonic Acid or Fucose, could be the 

potential new drugs and may show the 

polypharmacological properties. 

Methylphosphinic Acid has both 

Acetylcholinesterase and Cholinesterase as the 

principal components. Hence, it could be used 

for the treatment of Alzheimer’s Disease 

whereas the 2-(N-Morpholino)-Ethanesulfonic 

Acid or Fucose act on as many as 30 proteins. 

They should be studied for more than one 

indication as they are being developed for 

treating more than one disease including 

Alzheimer’s Disease, Myasthenia Gravis and 

Glaucoma.  

Alzheimer’s 
DiseaseTacrine

ACHE

BCHE

ACHE

BCHE

 

Figure 9. Multiple-paths from Tacrine to Alzheimer’s disease 

Example 3: Finding complex relationships 
among drug, gene, and disease. 

Since at least one gene is involved in all 

the diseases, we attempted to find the 

relationship between drug, gene and the disease. 

To understand the relationship, we give a brief 

overview of protein and gene. 

Protein is a chain of polypeptides linked 

together. A polypeptide is a linear chain of 

amino acids linked together by means of a 

peptide (- H – N – CO -) bond.  Enzymes are 

proteins that catalyze a chemical reaction in the 

human body. A polypeptide chain in a protein is 

coded by a particular gene. A gene is made up of 

a genetic code. The sequence of a genetic code 

results in the sequence of amino acids in a 

polypeptide. In other words each gene codes a 

polypeptide which is contained in a protein. The 

same polypeptide may be contained in more than 

one protein. Different polypeptides contained in 

one protein may be synthesized by different 

genes. Hence, a many-to-many relationship 

exists between proteins and genes where as a 

one-to-one relationship exists between a 

polypeptide and a gene. A gene may be involved 

in causing a disease by synthesizing a 

protein/enzyme. A drug acts as an inhibitor for 

the action of a protein to cure a disease.  

We assumed that if a gene causes a 

disease and a drug cures the disease, the same 

drug can be used to treat another disease that are 

involved the same gene.  Based on this 

assumption, we studied the drug-gene-disease 

relationship for the gene ACHE which is a 

known factor in Alzheimer’s disease. There are 

a number of approved drugs in DrugBank that 

are known to act as the inhibitors of 

Acetylcholinesterase. In our study we 

considered three drugs. They are Tacrine used 

primarily for the treatment of Alzheimer’s 

disease, Pyridostigmine used for the treatment of 

Myasthenia Gravis, and Demecarium used for 

the treatment of Glaucoma. As shown in Figure 

10, many other drugs could be studied for their 

potential use for the treatment of Alzheimer’s 

disease.  

 

Chloroquine
hasProteinTarget
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hasProteinTarget
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Quinine

Amodiaquine
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Figure 8. Example Relations between Anti-malarial Drugs and Malaria. 
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Glaucoma

Isoflurophate 

Demecarium 

Myasthenia Gravis

Physostigmine

Ambenonium    

Neostigmine     

Pyridostigmine      

Pralidoxime 
Tubocurarine

ACHE

Tacrine  
Choline Rivastigmine  Donepezil 

Galantamine 

Edrophonium    

Alzheimer’s Disease

Figure 10.The drug-disease-gene relationship for gene ACHE 

CONCLUSIONS 

A large number of diseases have been 

known to affect humans every day. 

Computational methods have been proposed to 

find the disease genes and protein interaction. 

However, few methods have been proposed to 

facilitate drug development. On the other hand, 

large amount of biological and chemical data is 

present on the Internet in public databases. It 

will be impossible for humans to digest all of the 

content on the web without the assistance of 

effective knowledge discovery tools. As the 

Internet expands to contain more and more data, 

information definition and searching is 

becoming increasingly important. 

In this paper, we take advantage of the 

recent Semantic Web technologies and integrate 

them with distributed routing algorithms to 

address drug discovery problem. We developed 

a novel framework consisting of a hierarchical 

knowledge abstraction and an efficient discovery 

protocol to speed up drug discovery. By 

extracting drug-related semantic metadata of 

web resources, our discovery scheme can 

capture the semantic association of drugs. In our 

discovery framework, complex semantic 

relations, identified by the chaining of the 

ontological triples in the metadata will allow us 

to identify more complex relationships among 

distributed drug-related data sources; these 

relationships were not known to the public 

previously. We have evaluated the proposed 

discovery framework with real web data. The 

experimental results revealed the scalability and 

efficiency of our proposed discovery framework. 
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