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Abstract1 
 

Decision Tree Induction is a powerful classification 
tool that is much used in practice and works well for static 
data with dozens of attributes.  We adapt the decision tree 
concept to a setting where data changes rapidly and 
hundreds or thousands of attributes may be relevant.  
Decision tree branches are evaluated as needed, based on 
the most recent data, focusing entirely on the data that 
needs to be classified.  Our algorithm is based on the       
P-tree data structure that allows fast evaluation of counts 
of data points, and results in scaling that is better than 
linear in the data set size. 
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1 INTRODUCTION 
 

A typical classification task consists of predicting a 
discrete property, such as whether a patient is sick, 
whether an e-mail message is spam, or whether a protein 
has a particular function. Traditionally a handful of 
attributes were used for the prediction.  When evaluating 
whether a patient has a particular disease a doctor may do 
a dozen tests and use the results for his conclusion.  
Decision tree algorithms, such as C4.5 [1] and its 
successors, have proven extremely useful in this setting. 
Modern data mining problems are, however, often 
different in nature.  When predicting the function of a 
gene, researchers can draw on a wealth of information 
that has been collected in biological databases and may 
contain thousands of relevant properties.  Traditional 
decision tree algorithms are not suitable in this setting 
because, in any one prediction, they only use the 
information of a small number of attributes.  Including 
more attributes would result in decision tree branches that 
are represented by few or no training points and cannot 
provide statistically significant information, a problem 
known as the curse of dimensionality [2].  Our algorithm 
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builds decision tree branches around the sample that is to 
be classified (lazy classification).  That means that the 
data set is not broken up unnecessarily by attribute values 
that are irrelevant to the sample in question.  We 
consistently follow the ideal of an entirely instance-driven 
classification even when continuous attributes are 
involved.  Whereas traditional decision tree algorithms, 
including lazy decision tree induction [3], discretize the 
data based on the data set available at training time, our 
algorithm uses intervals that are based on the test sample.   

In contrast to other instance-based, such as Parzen 
window [4], kernel Podium [5], and k-nearest neighbor 
classification, our algorithm has a powerful attribute 
selection mechanism similar to decision tree algorithms.  
Kernel- and window-based techniques do not normally 
weight attributes according to their importance.  For 
categorical attributes, this limitation is particularly 
problematic because it only allows two possible distances 
for each attribute, such as distance 0 if the values of 
categorical attributes match and 1 otherwise.  Solutions 
that have been suggested include weighting attribute 
dimensions according to their information gain [6]; 
optimizing attribute weighting using genetic algorithms 
[7]; selecting important attributes in a wrapper approach 
[8]; and, in a more general kernel formulation, boosting as 
applied to heterogeneous kernels [9].  All of these 
approaches increase the algorithmic complexity and are 
therefore unsuitable to the typically large data set sizes 
encountered in data mining. 

A further problem with traditional decision tree 
algorithms is that the classifier, i.e., the decision tree, has 
to be constructed every time the data changes.  That is 
unacceptable in settings were new data arrives rapidly, 
such as predictions in computer networks.  We use the P-
tree data structure [10] to compute counts on the current 
data in a way that typically scales less then linear with 
data set size.  The favorable scaling is achieved by a bit-
column-wise storage organization in which sections of 
columns that are purely composed of 0 or 1 values at 
every level are eliminated from the calculation of counts.   
This leads to a best-case complexity that is logarithmic in 
the number of data points. 

Section 2 discusses the algorithm, Section 3 presents 
our experimental setup and results, and Section 4 
concludes the paper. 

 



 

2  ALGORITHM 
  

Our algorithm is loosely based on decision tree 
induction [1] in selecting attributes successively based on 
their relevance to the classification task.  Data points that 
match in all selected attributes are considered relevant to 
the prediction task and the class label of the sample of 
interest is determined from the plurality of votes among 
those points.  Attribute selection is based on optimizing 
the gain of information as defined by Shannon [12].  In 
contrast to conventional decision tree induction [1] tree 
branches are constructed as needed according to the 
sample that is to be classified, similar to lazy decision tree 
induction [3].  The main differences compared with [3] lie 
in our treatment of continuous attributes using a window 
function and the efficient count calculation using P-trees.   

 
2.1 P-trees 
 

The P-tree data structure was originally developed 
for spatial data [10] but has been successfully applied in 
many contexts [11,13] and is in describe in detail in those 
publications.  P-Trees store bit-columns of the data in 
sequence to allow compression as well as the fast 
evaluation of counts of records that satisfy a particular 
condition.  A tree-based structure replaces subtrees that 
consist entirely of 0 values by a higher level "pure 0" 
node, and subtrees that consist entirely of 1 values by 
higher level "pure 1" nodes.  The number of records that 
satisfy a particular condition is now evaluated by a bit-
wise AND on the compressed bit-sequences.  Figure 1 
illustrates the storage of a table with 2 integer and one 
Boolean attribute.  The number of records with A1 = 12 
(i.e. the bit sequence 1100) is evaluated as a bit-wise 
AND of the two P-Trees corresponding to the higher 
order bits of A1 and the complements of the two P-Trees 
corresponding to the lower order bits.  This AND 
operation can be done very efficiently for the first half of 
the data set, since the single high-level 0-bit already 
indicates that the condition is not satisfied for any of the 
records.  This is the basis for a scaling better than O(N) 
for such operations.  

 
Figure 1:  Storage of tables as hierarchically compressed 
bit columns 

The efficiency of P-tree operations relies on the 
compression of the bit sequences, and thereby on the 
ordering of rows.  For data that shows inherent continuity, 
such as spatial or multimedia data, such an ordering can 
be easily constructed.  If data shows no natural continuity 
it may be beneficial to sort it.  We sort according to all 
highest order bits first.  Figure 1 indicates at the bottom 
the sequence in which bits are used for sorting.    

2.2 HOBbit Distance 
 

The nature of a P-tree-based data representation with 
its bit-column structure has a strong impact on the kinds 
of algorithms that will be efficient.  Determining the 
number of points in an interval that is defined by the 
HOBbit distance [11] requires only one AND operation 
and is therefore particularly efficient: 
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where as and at are attribute values, and   denotes the 
floor function.  The HOBbit distance can also be 
understood as the number of bits by which two values 
have to be right-shifted to make them equal.   
 
2.3 Pruning 
 

It is well known that decision trees have to be 
pruned to work successfully [1].  Information gain alone 
is, therefore, not a sufficient criterion to decide which 
attributes to use for classification.  We use statistical 
significance as a stopping criterion, similar to decision 
tree algorithms that prune during tree construction.  In our 
algorithm, significance is calculated on a different subset 
of the data than information gain to get a statistically 
sound estimate.  The training set is split into two parts, 
with two-thirds of the data being used to determine 
information gain and one-third to test significance 
through Fisher’s exact test [14].  An attribute is considered 
relevant only if it leads to a split that is significant, e.g., at 
the 1% level.  The full set is then taken to determine the 
predicted class label through plurality vote. 

 
2.4. Pursuing Multiple Paths 

The number of attributes that can be considered in a 
decision-tree-like setting, while maintaining a particular 
level of significance, is limited due to the "curse of 
dimensionality" [2].  Although our algorithm suffers less 
from this problem then conventional decision tree 
techniques due to its focus on the sample attributes, we 
still observe a benefit from combining multiple classifiers 
to get better statistics.  A similar approach is taken by 
bagging algorithms [15].  We use a very simple 
alternative in which several branches are pursued, each 
starting with a different attribute.  The attributes with the 
highest information gain are picked as starting attributes, 



 

and branches are constructed in the standard way from 
thereon.  The votes of all branches are combined into one 
final vote.  This modification leads to a particularly high 
improvement for data sets with many attributes because it 
gives some attributes a vote that would not otherwise 
have one. 

 
3 IMPLEMENTATION AND RESULTS 
 

We implemented all algorithms in Java and 
evaluated them on 7 data sets.  Data sets were selected to 
have at least 3000 data points and a binary class label.  
Two-thirds of the data were taken as a training set and 
one-third as a test set.  Due to the consistently large size 
of data sets, cross-validation was considered unnecessary.  
All experiments were done using the same parameter 
values for all data sets. 

 
3.1 Data Sets 
 

Five of the data sets were obtained from the UCI 
machine learning library [16] where full documentation 
on the data sets is available.  These data sets include the 
following: 
• adult data set: Census data are used to predict 

whether income is greater than $50,000.  
• spam data set: Word and letter frequencies are used 

to classify e-mail as spam. 
• sick-euthyroid data set: Medical data are used to 

predict sickness from thyroid disease. 
• kr-vs.-kp (king-rook-vs.-king-pawn) data set: 

Configurations on a chess board are used to predict 
if "white can win." 

• mushroom data set: Physical characteristics are used 
to classify mushrooms as edible or poisonous. 

 
Two additional data sets were used.  A gene-

function data set was generated from yeast data available 
at the web site of the Munich Information Center for 
Protein Sequences [17]. The highest level of the gene 
localization, protein class, complex, pathway and 
phenotype hierarchies were used to predict a function, 
"metabolism."  Since proteins can have multiple 
localizations and other properties, each domain value was 
taken as a Boolean attribute that was 1 if the protein is 
known to have the localization and 0 otherwise leading to 
146 Boolean attributes.  A second data set was generated 
from spatial data.  The RGB colors in the photograph of a 
cornfield are used to predict the yield of the field.  Class 
label is the first bit of the 8-bit yield information; i.e., the 
class label is 1 if yield is higher than 128 for a given 
pixel.  No preprocessing of the data was done.  Some 
attributes, however, were identified as being logarithmic 
in nature, and the logarithm was encoded in P-trees: 
"capital-gain" and "capital-loss" of the adult data set, and 
all attributes of the "spam" data set.  

3.2 Results 
 

Table 2 compares the results for our decision-tree-
based algorithm with the results for C4.5.  It can be seen 
that for the bioinformatics data set the error rate clearly 
decreases for both lazy decision tree implementations.  
This supports the claim that while C4.5 is suitable for data 
sets with a small number of attributes of traditional data 
sets, its usefulness decreases in the face of new 
applications such as bioinformatics data with hundreds of 
attributes.  Note that the gene-function data set is still 
smaller than most data sets in the bioinformatics field.  It 
can furthermore be seen that the lazy decision tree 
algorithm that involves 20 paths is competitive all data 
sets, which is a significant achievement since C4.5 
involves many advanced tree pruning steps that cannot be 
done for lazy classification that lacks the extensive tree 
construction phase. 

 
Table 1. Error Rates of decision-tree-based classification. 

 C4.5 

Decision- 
tree-
based     (+/-) 

20 
paths 

adult 14.0 16.0 0.3 14.9 
spam 7.2 11.5 0.9 7.1 
sick-
euthyroid 2.2 2.8 0.5 2.9 
kr-vs-kp 0.5 1.7 0.4 0.8 
mushroom 0 0 0 0 
gene-function 15.7 15.5 0.8 15.5 
crop 19.0 18.8 0.2 19.0 
 
3.3 Decision-tree Results Compared with 20 Paths 
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Figure 4.  Difference between a vote based on 20 paths 
and a vote based on 1 path in the decision-tree-based 
algorithm in units of the standard error. 

 
For the decision-tree-based algorithm a significance 

level of 1% was chosen.  Information gain was calculated 
on two-thirds of the training data with significance being 
evaluated on the rest.  The final vote was based on the 



 

entire training set.  Accuracy was generally higher when a 
maximum of 20 paths were pursued.  It can be seen in 
Figure 4 that the difference is particularly large for the 
spam data set that has many continuous attributes, which 
is a setting in which the algorithm is expected to work 
particularly well.  The crop data set only had three 
attributes and therefore did not benefit.   

 
3.3 Performance 
 

Standard decision tree algorithms, whether they are 
eager or lazy, are based on database scans that scale 
linearly with the number of data points.  The linear 
scaling is a serious problem in data mining problems that 
deal with thousands or millions of data points.  A main 
benefit of using of P-trees lies in the fact that the AND 
operation that replaces database scans benefits from 
compression at every level.  As a consequence, we see 
significantly sub-linear scaling.  Figure 6 shows the 
execution time for decision-tree-based classification as a 
function of the number of data points for the adult data 
set.  The solid line indicates a linear fit of the data.  The 
actual performance results clearly show a less significant 
increase in execution time with data set size. 
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Figure 6.  Scaling of execution time as a function of 
training set size.  Diamonds correspond to measured 
execution time, and the line to a linear interpolation. 

 
4. Conclusions 
We have introduced a lazy decision-tree-based 

classifier that is particularly suitable to high-dimensional 
data and data that changes frequently.  Our algorithms 
uses distance information within continuous attributes 
consistently by considering neighborhoods with respect to 
the unknown sample.  Performance is achieved by using 
the P-tree data structure that allows efficient evaluation of 
counts of training points with particular properties.  
Neighborhoods are defined using the HOBbit distance 
that is particularly suitable to the bit-wise nature of the P-
tree representation.  We show that accuracy of our 
classifier can be improved by constructing multiple 
branches.  We could show that for a bioinformatics data 

set, with many attributes, the accuracy of our algorithm is 
higher than that of C4.5.  For traditional data sets with 
few attributes accuracies are comparable to C4.5 without 
the need of constructing and pruning a full decision tree.  
Finally, we showed that our algorithm has better than 
O(N) scaling with the number of training points. 
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